next up previous
Next: AND OTHER NOTATIONS Up: ORDER NOTATION FOR POSITVE Previous: def2:

def3:

$f\in O(g)$ if $\lim_{n \rightarrow \infty}
\frac{f(n)}{g(n)}\rightarrow c$ for some $c \in R^{*}.$

Examples:
  1. $10^{6}n^{2}=O(n^{2})$
    $\lim_{n \rightarrow \infty} \frac{10^{6}n^{2}}{n^{2}}\rightarrow 10^{6}$
  2. $5n \in O(n^2)$
    $\lim_{n \rightarrow \infty} \frac{5n}{n^{2}} \rightarrow 0$


  3. Prove that $2^{n}\neq O(n^{m})$ for any integer $m$.

    (By Contradiction:) Suppose $2^{n}=O(n^{m})$

    $\lim_{n \rightarrow \infty} \frac{2^{n}}{n^{m}}= \lim_{n \rightarrow \infty}
\frac{2^{n}\log 2}{mn^{m-1}}$

    $=\lim_{n \rightarrow \infty} \frac{{(\log 2)}^2 2^{n}}{m(m-1)n^{m-2}}$

    $=\lim_{n \rightarrow \infty} \frac{(\log 2)^{m}2^{n}}{m(m-1)\cdots(2)1}$ $\rightarrow \infty $

    Thus, polynomial algorithms are distinctly superior to exponential-time algorithms.

(Project should have polynomial algo's only)



Sushil_Prasad 2010-06-21