next up previous
Next: Applying Pumping Lemma Up: Properties of Regular Sets Previous: Properties of Regular Sets

Pumping Lemma for Regular Sets

  figure10
Figure 1: Paths from tex2html_wrap_inline200 to tex2html_wrap_inline202 .

Suppose n states in an FA.
If tex2html_wrap_inline218 , with tex2html_wrap_inline220
tex2html_wrap_inline222
tex2html_wrap_inline224
If tex2html_wrap_inline226 then tex2html_wrap_inline228 for tex2html_wrap_inline230 .
tex2html_wrap_inline241
tex2html_wrap_inline243
tex2html_wrap_inline245
tex2html_wrap_inline247
tex2html_wrap_inline249
tex2html_wrap_inline251

Pumping Lemma: Let L be a regular set. Then there is a constant n such that if z is any word in L, and tex2html_wrap_inline242 , then we may write tex2html_wrap_inline244 in such a way that tex2html_wrap_inline224 , tex2html_wrap_inline248 , and for all tex2html_wrap_inline230 , tex2html_wrap_inline252 is in L.

Furthermore, n is no greater than the number of states of the smallest FA accepting L.



Sushil Prasad
Tue Mar 21 14:10:23 EST 2000