
Distrib uted Systems
Principles and Paradigms

Chapter 06
(version 16th May 2006)

Maarten van Steen

Vrije Universiteit Amsterdam, Faculty of Science
Dept. Mathematics and Computer Science

Room R4.20. Tel: (020) 444 7784
E-mail:steen@cs.vu.nl, URL: www.cs.vu.nl/ � steen/

01 Introduction
02 Communication
03 Processes
04 Naming
05 Synchronization
06 Consistency and Replication
07 Fault Tolerance
08 Security
09 Distributed Object-Based Systems
10 Distributed File Systems
11 Distributed Document-Based Systems
12 Distributed Coordination-Based Systems

00 – 1 /

Consistenc y & Replication

� Introduction (what’s it all about)

� Data-centric consistency

� Client-centric consistency

� Distribution protocols

� Consistency protocols

� Examples

06 – 1 Consistency & Replication/

Shared Objects

Problem: If objects (or data) are shared, we need to
do something about concurrent accesses to guaran-
tee state consistency.

Server machine

Network

Server OS

Server

Skeleton

Client machine Client machine

Proxy Proxy

Client OS Client OS

Client Client

06 – 2 Consistency & Replication/6.1 Introduction

Concurrenc y Contr ol (1/2)

Problem: Is the remote object already thread-safe or
not?

Server machine

O
�

S

Server

Skeleton
Concurrent
invocations

Mechanism
for mutual
e� xclusion

Adapter

Incoming requests

Server machine

O
�

S

Server

Skeleton

Concurrent
invocations

Mechanism
for mutual
e� xclusion

Adapter

Incoming requests

(a) (b)

06 – 3 Consistency & Replication/6.1 Introduction

Concurrenc y Contr ol (2/2)

Problem: Should we seek for object-specific solu-
tions, or generally applicable ones?

Middleware

Network OS

O
�

bject-
s� pecific

replication
protocol

Replicated
o� bject

Middleware

Network OS

Network
(a)

Middleware

Network OS
Middleware
replication
protocol

Network
(b)

Replicated
o� bject

Middleware

Network OS

Question: Why would we want object-specific repli-
cation protocols?

06 – 4 Consistency & Replication/6.1 Introduction

Performance and Scalability

Main issue: To keep replicas consistent, we generally
need to ensure that all conflicting operations are done
in the the same order everywhere

Conflicting operations: From the world of transac-
tions:

� Read–write conflict: a read operation and a write
operation act concurrently� Write–write conflicts: two concurrent write opera-
tions

Guaranteeing global ordering on conflicting operations
may be a costly operation, downgrading scalability

Solution: weaken consistency requirements so that
hopefully global synchronization can be avoided

06 – 5 Consistency & Replication/6.1 Introduction

Data-Centric Consistenc y Models
(1/2)

Consistenc y model: a contract between a (distributed)
data store and processes, in which the data store spec-
ifies precisely what the results of read and write oper-
ations are in the presence of concurrency.

Essence: A data store is a distributed collection of
storages accessible to clients:

Distributed data store

Process Process Process

Local copy

06 – 6 Consistency & Replication/6.2 Data-Centric Consistency Models

Data-Centric Consistenc y Models
(2/2)

Strong consistenc y models: Operations on shared
data are synchronized:

� Strict consistency (related to time)� Sequential consistency (what we are used to)� Causal consistency (maintains only causal rela-
tions)� FIFO consistency (maintains only individual or-
dering)

Weak consistenc y models: Synchronization occurs
only when shared data is locked and unlocked:

� General weak consistency� Release consistency� Entry consistency

Obser vation: The weaker the consistency model, the
easier it is to build a scalable solution.
06 – 7 Consistency & Replication/6.2 Data-Centric Consistency Models

Strict Consistenc y

Any read to a shared data item X returns the value
stored by the most recent write operation on X.

Obser vation: It doesn’t make sense to talk about “the
most recent” in a distributed environment.

P1:

P1:

W(x)a

W(x)a

R(x)NIL R(x)a

R(x)aP2:

P2:

(a)

(b)

� Assume all data items have been initialized to NIL� W(x)a: value a is written to x� R(x)a: reading x returns the value a

Note: Strict consistency is what you get in the normal
sequential case, where your program does not inter-
fere with any other program.

06 – 8 Consistency & Replication/6.2 Data-Centric Consistency Models

Sequential Consistenc y

The result of any execution is the same as if the op-
erations of all processes were executed in some se-
quential order, and the operations of each individual
process appear in this sequence in the order speci-
fied by its program.

Note: We’re talking about interlea ved executions: there
is some total ordering for all operations taken together.

P1:

P1:

W(x)a
�

W(x)a

W(x)b
�

W(x)b
�

R(x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)b

R(x)a

R(x)a

P2:

P2:

P3:

P3:

P4:

P4:

(a)

(b)

Linearizab le: Sequential plus operations are ordered
according to a global time.

06 – 9 Consistency & Replication/6.2 Data-Centric Consistency Models

Causal Consistenc y

Writes that are potentially causally related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order by different
processes.

P1:

P1:

W(x)a

W(x)a

R(x)aP2:

P2:

P3:

P3:

P4:

P4:

W(x)b

W(x)b

R(x)a

R(x)a

R(x)a

R(x)a

R(x)b

R(x)b

R(x)b

R(x)b

(a)

(b)

06 – 10 Consistency & Replication/6.2 Data-Centric Consistency Models

FIFO Consistenc y

Writes done by a single process are received by all
other processes in the order in which they were is-
sued, but writes from different processes may be seen
in a different order by different processes.

P1: W(x)a
R(x)aP2:

P3:
P4:

W(x)b W(x)c

R(x)a
R(x)a R(x)c

R(x)cR(x)b
R(x)b

06 – 11 Consistency & Replication/6.2 Data-Centric Consistency Models

Weak Consistenc y (1/2)

� Accesses to synchronization variables are se-
quentially consistent.

� No access to a synchronization variable is allowed
to be performed until all previous writes have com-
pleted everywhere.

� No data access is allowed to be performed un-
til all previous accesses to synchronization vari-
ables have been performed.

Basic idea: You don’t care that reads and writes of a
series of operations are immediately known to other
processes. You just want the effect of the series itself
to be known.

06 – 12 Consistency & Replication/6.2 Data-Centric Consistency Models

Weak Consistenc y (2/2)

P1:

P1:

W(x)a

W(x)a

P2:

P2:

P3:

W(x)b

W(x)b

R(x)a

R(x)b

R(x)a

R(x)b

R(x)a

(a)

(b)

S

S

S

S

S

Obser vation: Weak consistency implies that we need
to lock and unlock data (implicitly or not).

06 – 13 Consistency & Replication/6.2 Data-Centric Consistency Models

Release Consistenc y

Idea: Divide access to a synchronization variable into
two parts: an acquire and a release phase. Acquire
forces a requester to wait until the shared data can
be accessed; release sends requester’s local value to
other servers in data store.

P1: W
�

(x)a
P2:
P3:

W
�

(x)b

R(x)a

R(x)b
A
�

cq(L)
A
�

cq(L)
Rel(L)

Rel(L)

06 – 14 Consistency & Replication/6.2 Data-Centric Consistency Models

Entr y Consistenc y

� With release consistency, all local updates are
propagated to other copies/servers during release
of shared data.

� With entry consistency, each shared data item is
associated with a synchronization variable.

� When acquiring the synchronization variable, the
most recent values of its associated shared data
item are fetched.

Note: Where release consistency affects all shared
data, entry consistency affects only those shared data
associated with a synchronization variable.

Question: What would be a convenient way of mak-
ing entry consistency more or less transparent to pro-
grammers?

06 – 15 Consistency & Replication/6.2 Data-Centric Consistency Models

Summar y
Model Description
Strict Absolute time ordering of all shared accesses
Lin. All processes see all shared accesses in the

same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Seq. All processes see all shared accesses in the
same order. Accesses are not ordered in time

Causal All processes see causally-related shared ac-
cesses in the same order

FIFO All processes see writes from each other in the
order they were issued. Writes from different pro-
cesses may not always be seen in that order

Weak Shared data can be counted on to be consistent
only after a synchronization is done

Release Shared data are made consistent when a critical
region is exited

Entry Shared data pertaining to a critical region are
made consistent when a critical region is entered

06 – 16 Consistency & Replication/6.2 Data-Centric Consistency Models

Client-Centric Coherence Models

� System model

� Monotonic reads

� Monotonic writes

� Read-your-writes

� Write-follows-reads

06 – 17 Consistency & Replication/6.3 Client-Centric Consistency Models

Client-Centric Consistenc y
Models

Goal: Show how we can perhaps avoid systemwide
consistency, by concentrating on what specific clients
want, instead of what should be maintained by servers.

Backgr ound: Most large-scale distributed systems
(i.e., databases) apply replication for scalability, but
can support only weak consistency:

DNS: Updates are propagated slowly, and inserts may
not be immediately visible.

NEWS: Articles and reactions are pushed and pulled
throughout the Internet, such that reactions can
be seen before postings.

Lotus Notes: Geographically dispersed servers repli-
cate documents, but make no attempt to keep
(concurrent) updates mutually consistent.

WWW: Caches all over the place, but there need be
no guarantee that you are reading the most re-
cent version of a page.

06 – 18 Consistency & Replication/6.3 Client-Centric Consistency Models

Consistenc y for Mobile Users

Example: Consider a distributed database to which
you have access through your notebook. Assume your
notebook acts as a front end to the database.

� At location A you access the database doing reads
and updates.

� At location B you continue your work, but unless
you access the same server as the one at location
A, you may detect inconsistencies:

– your updates at A may not have yet been prop-
agated to B

– you may be reading newer entries than the
ones available at A

– your updates at B may eventually conflict with
those at A

Note: The only thing you really want is that the entries
you updated and/or read at A, are in B the way you left
them in A. In that case, the database will appear to be
consistent to you.

06 – 19 Consistency & Replication/6.3 Client-Centric Consistency Models

Basic Architecture

Read and write operations

Client moves to other location
a	 nd (transparently) connects to
o� ther replica

W

ide-area network

Replicas need to maintain
c� lient-centric consistency

Portable computer

Distributed and replicated database

06 – 20 Consistency & Replication/6.3 Client-Centric Consistency Models

Monotonic Reads (1/2)

If a process reads the value of a data item x, any suc-
cessive read operation on x by that process will always
return that same or a more recent value.

Notation: WS
�
xi
 t ��� is the set of write operations (at Li)

that lead to version xi of x (at time t); WS
�
xi
 t1 � ;x j
 t2 ���

indicates that it is known that WS
�
xi
 t1 ��� is part of WS

�
x j
 t2 ��� .

Note: Parameter t is omitted from figures

06 – 21 Consistency & Replication/6.3 Client-Centric Consistency Models

Monotonic Reads (2/2)

Example: Automatically reading your personal calen-
dar updates from different servers. Monotonic Reads
guarantees that the user sees all updates, no matter
from which server the automatic reading takes place.

Example: Reading (not modifying) incoming mail while
you are on the move. Each time you connect to a dif-
ferent e-mail server, that server fetches (at least) all
the updates from the server you previously visited.

06 – 22 Consistency & Replication/6.3 Client-Centric Consistency Models

Monotonic Writes

A write operation by a process on a data item x is
completed before any successive write operation on x
by the same process.

L1: W(x)

 W(x) W(xL2:

1

1 2)

L1:

L2:

(a)

(b)

 W(x2)

 W(x)1

Example: Updating a program at server S2, and en-
suring that all components on which compilation and
linking depends, are also placed at S2.

Example: Maintaining versions of replicated files in
the correct order everywhere (propagate the previous
version to the server where the newest version is in-
stalled).

06 – 23 Consistency & Replication/6.3 Client-Centric Consistency Models

Read Your Writes

The effect of a write operation by a process on data
item x, will always be seen by a successive read op-
eration on x by the same process.

L1:

 R(xL2: 2WS(x ;x1 2))

L1:

 R(xL2: 2WS(x2))

(a)

(b)

 W(x)1

 W(x)1

Example: Updating your Web page and guarantee-
ing that your Web browser shows the newest version
instead of its cached copy.

06 – 24 Consistency & Replication/6.3 Client-Centric Consistency Models

Writes Follo w Reads

A write operation by a process on a data item x fol-
lowing a previous read operation on x by the same
process, is guaranteed to take place on the same or a
more recent value of x that was read.

Example: See reactions to posted articles only if you
have the original posting (a read “pulls in” the corre-
sponding write operation).

06 – 25 Consistency & Replication/6.3 Client-Centric Consistency Models

Distrib ution Protocols

� Replica Placement

� Update Propagation

� Epidemic Protocols

06 – 26 Consistency & Replication/6.4 Distribution Protocols

Replica Placement (1/2)

Model: We consider objects (and don’t worry whether
they contain just data or code, or both)

Distinguish diff erent processes: A process is capa-
ble of hosting a replica of an object or data:

� Permanent replicas: Process/machine always
having a replica� Server-initiated replica: Process that can dy-
namically host a replica on request of another server
in the data store� Client-initiated replica: Process that can dynam-
ically host a replica on request of a client (client
cache)

06 – 27 Consistency & Replication/6.4 Distribution Protocols

Replica Placement (2/2)

Permanent�
replicas

Server-initiated replicas�
Client-initiated replicas�

Clients

Client-initiated replication
Server-initiated replication

06 – 28 Consistency & Replication/6.4 Distribution Protocols

Server-Initiated Replicas

Server without
copy of file F

Client Server with
copy of F

P
Q

C1

C2

Server Q counts access from C and
C as if they would come from P

1
2
�

File F

� Keep track of access counts per file, aggregated
by considering server closest to requesting clients

� Number of accesses drops below threshold D �
drop file

� Number of accesses exceeds threshold R � repli-
cate file

� Number of access between D and R � migrate
file

06 – 29 Consistency & Replication/6.4 Distribution Protocols

Update Propagation (1/3)

� Propagate only notification/invalidation of update
(often used for caches)

� Transfer data from one copy to another (distributed
databases)

� Propagate the update operation to other copies
(also called active replication)

Obser vation: No single approach is the best, but de-
pends highly on available bandwidth and read-to-write
ratio at replicas.

06 – 30 Consistency & Replication/6.4 Distribution Protocols

Update Propagation (2/3)

� Pushing updates: server-initiated approach, in which
update is propagated regardless whether target
asked for it.

� Pulling updates: client-initiated approach, in which
client requests to be updated.

Issue Push-based Pull-based
1: List of client caches None
2: Update (and possibly fetch update) Poll and update
3: Immediate (or fetch-update time) Fetch-update time
1: State at server
2: Messages to be exchanged
3: Response time at the client

06 – 31 Consistency & Replication/6.4 Distribution Protocols

Update Propagation (3/3)

Obser vation: We can dynamically switch between
pulling and pushing using leases : A contract in which
the server promises to push updates to the client until
the lease expires.

Issue: Make lease expiration time dependent on sys-
tem’s behavior (adaptive leases):

� Age-based leases: An object that hasn’t changed
for a long time, will not change in the near future,
so provide a long-lasting lease

� Renewal-frequency based leases: The more of-
ten a client requests a specific object, the longer
the expiration time for that client (for that object)
will be

� State-based leases: The more loaded a server is,
the shorter the expiration times become

Question: Why are we doing all this?

06 – 32 Consistency & Replication/6.4 Distribution Protocols

Epidemic Algorithms

� General background

� Update models

� Removing objects

06 – 33 Consistency & Replication/6.4 Distribution Protocols

Principles

Basic idea: Assume there are no write–write con-
flicts:

� Update operations are initially performed at one
or only a few replicas� A replica passes its updated state to a limited
number of neighbors� Update propagation is lazy, i.e., not immediate� Eventually, each update should reach every replica

Anti-entr opy: Each replica regularly chooses another
replica at random, and exchanges state differences,
leading to identical states at both afterwards

Gossiping: A replica which has just been updated
(i.e., has been contaminated), tells a number of
other replicas about its update (contaminating them
as well).

06 – 34 Consistency & Replication/6.4 Distribution Protocols

System Model

� We consider a collection servers, each storing a
number of objects

� Each object O has a primary server at which up-
dates for O are always initiated (avoiding write-
write conflicts)

� An update of object O at server S is always time-
stamped; the value of O at S is denoted VAL

�
O � S �

� T
�
O � S � denotes the timestamp of the value of ob-

ject O at server S

06 – 35 Consistency & Replication/6.4 Distribution Protocols

Anti-Entr opy

Basic issue: When a server S contacts another server
S � to exchange state information, three different strate-
gies can be followed:

Push: S only forwards all its updates to S � :
if T

�
O � S ����� T

�
O � S �

then VAL
�
O � S ����� VAL

�
O � S �

Pull: S only fetches updates from S � :
if T

�
O � S ����� T

�
O � S �

then VAL
�
O � S ��� VAL

�
O � S ���

Push-Pull: S and S � exchange their updates by push-
ing and pulling values

Obser vation: if each server periodically randomly chooses
another server for exchanging updates, an update is
propagated in

�
log

�
N ��� time units.

Question: Why is pushing alone not efficient when
many servers have already been updated?

06 – 36 Consistency & Replication/6.4 Distribution Protocols

Gossiping

Basic model: A server S having an update to re-
port, contacts other servers. If a server is contacted
to which the update has already propagated, S stops
contacting other servers with probability 1 k.

If s is the fraction of ignorant servers (i.e., which are
unaware of the update), it can be shown that with
many servers:

s ! e "$# k % 1 & # 1 " s &
k s
1 0 ' 2000
2 0 ' 0600
3 0 ' 0200
4 0 ' 0070
5 0 ' 0025

Obser vation: If we really have to ensure that all servers
are eventually updated, gossiping alone is not enough

06 – 37 Consistency & Replication/6.4 Distribution Protocols

Deleting Values

Fundamental problem: We cannot remove an old
value from a server and expect the removal to prop-
agate. Instead, mere removal will be undone in due
time using epidemic algorithms

Solution: Removal has to be registered as a special
update by inserting a death certificate

Next problem: When to remove a death certificate (it
is not allowed to stay for ever):
� Run a global algorithm to detect whether the re-

moval is known everywhere, and then collect the
death certificates (looks like garbage collection)� Assume death certificates propagate in finite time,
and associate a maximum lifetime for a certificate
(can be done at risk of not reaching all servers)

Note: it is necessary that a removal actually reaches
all servers.

Question: What’s the scalability problem here?

06 – 38 Consistency & Replication/6.4 Distribution Protocols

Consistenc y Protocols

Consistenc y protocol: describes the implementa-
tion of a specific consistency model. We will concen-
trate only on sequential consistency.

� Primary-based protocols

� Replicated-write protocols

� Cache-coherence protocols

06 – 39 Consistency & Replication/6.5 Consistency Protocols

Primar y-Based Protocols (1/4)

Primar y-based, remote-write , fix ed server :

Data store

Single server
f
(
or item x

Client Client

A
)

nother server

W1. Write request
W2. Forward request to server for x
W3. Acknowledge write completed
W4. Acknowledge write completed

W1

W3 R3

W2 R2

W4

R1. Read request
R2. Forward request to server for x
R3. Return response
R4. Return response

R1 R4

Example: Used in traditional client-server systems
that do not support replication.

06 – 40 Consistency & Replication/6.5 Consistency Protocols

Primar y-Based Protocols (2/4)

Primar y-bac kup protocol:

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2

Example: Traditionally applied in distributed databases
and file systems that require a high degree of fault tol-
erance. Replicas are often placed on same LAN.

06 – 41 Consistency & Replication/6.5 Consistency Protocols

Primar y-Based Protocols (3/4)

Primar y-based, local-write protocol:

Data store

Current server
f
(
or item x

Client

1. Read or write request
2. Forward request to current server for x
3. Move item x to client's server
4. Return result of operation on client's server

3

2

1 4

New server
f
(
or item x

Example: Establishes only a fully distributed, non-
replicated data store. Useful when writes are expected
to come in series from the same client (e.g., mobile
computing without replication)

06 – 42 Consistency & Replication/6.5 Consistency Protocols

Primar y-Based Protocols (4/4)

Primar y-bac kup protocol with local writes:

Data store

Old primary
for item x

Client Client

Backup server

W1. Write request
W2. Move item x to new primary

W4. Tell backups to update
W5. Acknowledge update

W3. Acknowledge write completed

R1

W2

W4W4

W4

R2

R1. Read request
R2. Response to read

W1 W3

New primary
for item x

W5 W5

W5

Example: Distributed shared memory systems, but
also mobile computing in disconnected mode (ship all
relevant files to user before disconnecting, and update
later on).

06 – 43 Consistency & Replication/6.5 Consistency Protocols

Replicated-Write Protocols (1/3)

Active replication: Updates are forwarded to multi-
ple replicas, where they are carried out. There are
some problems to deal with in the face of replicated
invocations:

Client replicates
invocation request

A
)

ll replicas see
t
*
he same invocation

Object receives
t
*
he same invocation

t
*
hree times

Replicated object

A
)

B1

B2

B3

C

06 – 44 Consistency & Replication/6.5 Consistency Protocols

Replicated-Write Protocols (2/3)

Replicated invocations: Assign a coordinator on each
side (client and server), which ensures that only one
invocation, and one reply is sent:

Coordinator
o� f object B

Result

Coordinator
o� f object C

(a) (b)

Client replicates
invocation request

B1 B1

B2 B2

B3 B3

C1 C1

C2 C2

A A
+

Result

06 – 45 Consistency & Replication/6.5 Consistency Protocols

Replicated-Write Protocols (3/3)

Quorum-based protocols: Ensure that each opera-
tion is carried out in such a way that a majority vote is
established: distinguish read quorum and write quo-
rum :

A
,

A
,

A

B B

B

C C

C

D D

D

E E

E

F F

F

G G

G

H H

H

I I

I

J
-

J
-

J
-

K K

K

L L

L

NRD WR
.N= 3, = 10 NRD WR

.N= 7, = 6

NRD WRN= 1, = 12

06 – 46 Consistency & Replication/6.5 Consistency Protocols

Example: Lazy Replication

Basic model: Number of replica servers jointly im-
plement a causal-consistent data store. Clients nor-
mally talk to front ends which maintain data to ensure
causal consistency.

Distributed data store

Read queue
Write queue

Pending
request

Network

Clients

Local server

06 – 47 Consistency & Replication/6.5 Consistency Protocols

Lazy Replication:
Vector Timestamps

VAL(i): VAL(i)[i] denotes the total number of write op-
erations sent directly by a front end (client). VAL(i)[j]
denotes the number of updates sent from replica
#j.

WORK(i): WORK(i)[i] total number of write operations
directly from front ends, including the pending ones.
WORK(i)[j] is total number of updates from replica
#j, including pending ones.

LOCAL(C): LOCAL(C)[j] is (almost) most recent value
of VAL(j)[j] known to front end C (will be refined in
just a moment)

DEP(R): Timestamp associated with a request, re-
flecting what the request depends on.

06 – 48 Consistency & Replication/6.5 Consistency Protocols

Operations

Read operations:

R

1. DEP(R) := LOCAL(C)

R

2. DEP(R) < VA
)

L(i)

3. Data & VA
)

L(i)

4. LOCAL(C) := max{LOCAL(C),VAL(i)}

Read queue

Client

Replica i

Write operations:

W

1. DEP(W) := LOCAL(C)

W

5. DEP(W) < VAL(i)

3. ts(W)
4. LOCAL(C) := max{LOCAL(C),ts(W)}

Write queue

Client

Replica i

2. WORK(i)[i] := WORK(i)[i] + 1
t
/
s(W)[i] := WORK(i)[i]

t
/
s(W)[j] := DEP(W)[j]

06 – 49 Consistency & Replication/6.5 Consistency Protocols

