
Can I Clone This Piece of Code Here?

Xiaoyin Wang1
∗

, Yingnong Dang2†, Lu Zhang1†, Dongmei Zhang2, Erica Lan3, Hong Mei1
1Key Laboratory of High Confidence Software Technologies (Peking University),

Ministry of Education, Beijing, 100871, China
2Microsoft Research Asia, Beijing, China

3Microsoft Corporation, One Microsoft Way, Redmond, WA, USA
{wangxy06,zhanglu,meih}@sei.pku.edu.cn, yidang, dongmeiz, erical@microsoft.com

ABSTRACT
While code cloning is a convenient way for developers to reuse
existing code, it may potentially lead to negative impacts, such as
degrading code quality or increasing maintenance costs. Actually,
some cloned code pieces are viewed as harmless since they evolve
independently, while some other cloned code pieces are viewed as
harmful since they need to be changed consistently, thus incurring
extra maintenance costs. Recent studies demonstrate that neither
the percentage of harmful code clones nor that of harmless code
clones is negligible. To assist developers in leveraging the benefits
of harmless code cloning and/or in avoiding the negative impacts
of harmful code cloning, we propose a novel approach that auto-
matically predicts the harmfulness of a code cloning operation at
the point of performing copy-and-paste. Our insight is that the
potential harmfulness of a code cloning operation may relate to
some characteristics of the code to be cloned and the character-
istics of its context. Based on a number of features extracted from
the cloned code and the context of the code cloning operation, we
use Bayesian Networks, a machine-learning technique, to predict
the harmfulness of an intended code cloning operation. We eval-
uated our approach on two large-scale industrial software projects
under two usage scenarios: 1) approving only cloning operations
predicted to be very likely of no harm, and 2) blocking only cloning
operations predicted to be very likely of harm. In the first scenario,
our approach is able to approve more than 50% cloning operations
with a precision higher than 94.9% in both subjects. In the sec-
ond scenario, our approach is able to avoid more than 48% of the
harmful cloning operations by blocking only 15% of the cloning
operations for the first subject, and avoid more than 67% of the
cloning operations by blocking only 34% of the cloning operations
for the second subject.

Keywords
Code cloning, Harmfulness prediction, Bayesian networks, Pro-
gramming aid
†Corresponding Author
∗The work was done when the author was an intern at Microsoft
Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3 – 7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$10.00.

1. INTRODUCTION
Software reuse can reduce the costs of software development.

When reusing a piece of code, a developer may have two choices.
The first choice is to wrap the reused code into a module (e.g., a
method), and invoke the module wherever the code is used. The
second choice is to copy the code and paste it in the place where
she wants to reuse the code, making some revisions if necessary.

It is typically convenient for developers to reuse existing code
with copy-and-paste. A recent study [25] shows that, the schedule
pressure often prevents the developers from spending long time on
wrapping reused code to modules. Additionally, for some reused
piece of code, wrapping them can be technically challenging or re-
quire change on the components that developers should not change.
As a result, code clones (which are mainly the results of applying
software reuse based on copy-and-paste) make up a large propor-
tion of modern software code bases (e.g, more than 20% of the code
in Eclipse-JDT are involved in clones or near-clones [23]). How-
ever, developers may achieve this convenience at a cost. Mainte-
nance of cloned code requires extra effort, because developers need
to consider the consistency among the clone segments when they
try to make a revision to one clone segment1. Failing to maintain
consistency between clone segments may cause bugs [12] [22].

However, recent studies show that code clones are not always
detrimental to software development and evolution [24] [7]. In par-
ticular, Gode and Koschke [7] demonstrate that less than half of
the code clones may change during their life cycle. Among those
changes in code clones, only about half are consistent changes (i.e.,
simultaneous changes of more than one segment in a code clone
group), while the others are inconsistent changes (i.e., changes to
only one segment without touching the other segments). For in-
consistent changes2, in general developers do not need to consider
other clone segments in the clone group, and therefore do not need
to make any extra effort when revising a clone segment. For con-
sistent changes, in general developers may have to study all clone
segments in the clone group and decide which other segments they
should change and how to change them.

The preceding studies indicate that cloning operations can be
generally divided into two categories according to whether con-
sistency maintenance is required for the resultant clone segments.
The first category of cloning operations, referred to as harmless
cloning operations in this paper, includes cloning operations whose

1In this paper, when several pieces of code are clones to each other,
we use the term clone segment to represent one of such pieces of
code, and we use the term clone group to represent a group of clone
segments that are clones of each other.
2Here we use the term “inconsistent changes” for intentional in-
consistent changes. In reality, there may exist unintentional incon-
sistent changes which lead to bugs, but studies [8] show that such
cases are not common.

resultant clone groups are never changed or always changed in-
consistently. For this category of code clones, no maintenance of
consistency is required, so that developers can perform copy-and-
paste and benefit from the convenience for free. The second cat-
egory of cloning operations, referred to as harmful cloning oper-
ations in this paper, includes cloning operations whose resultant
clone groups need to be changed consistently. They are harmful
because any consistent change will incur extra maintenance effort
and even lead to code defects if consistency is not maintained. For
a harmful cloning operation, wrapping the cloned code into a mod-
ule should be a better choice. It should be noted that code clones
may have other kinds of harmfulness (e.g., bad readability). How-
ever, causing consistent changes is one of the most important kinds
of harmfulness and has been widely studied. Therefore, we focus
on the harmfulness of causing consistent changes in this paper.

Due to various reasons (e.g., lack of expertise or lack of sup-
porting information), developers may have difficulties on wisely
determine the harmfulness of a cloning operation wisely. In fact,
the statistics on our evaluation subjects (See Table 2) show that the
developers of the subjects allow a non-trivial number of harmful
cloning operations, which account for about 20% of all cloning op-
erations allowed. Therefore, assistance in understanding the harm-
fulness of an intended cloning operation may help developers make
a better choice for reusing existing code. In this paper, we pro-
pose an automatic approach to predicting the harmfulness of in-
tended cloning operations. The intuition of our idea is that some
characteristics of the code to be cloned and the context of a code
cloning operation may indicate its potential harmfulness. Based on
a number of features extracted from the cloned code and the context
information of the code cloning operation, we use Bayesian Net-
works, a machine-learning technique, to predict the harmfulness of
an intended code cloning operation. Specifically, we extract three
groups of features: historical features that describe the change his-
tory related to the code to be cloned, code features that describe
syntactical characteristics of the code to be cloned, and destination
features that characterize the target place (i.e., the place where the
developer intends to paste the code).

To evaluate our approach, we considered two possible usage sce-
narios of our harmfulness predictor for intended cloning opera-
tions: the conservative scenario for cautious developers who want
to perform cloning operations only when they are sure that the
cloning operations would be unlikely to incur harm for mainte-
nance, and the aggressive scenario for radical developers, who want
to block a significant proportion of harmful cloning operations while
still being able to perform most intended cloning operations. We
evaluated our approach using two large-scale software projects of
Microsoft in the following way: For the first scenario, we used
our approach to approve only cloning operations predicted to be
very likely to be harmless; while for the second scenario, we used
our approach to block only cloning operations predicted to be very
likely to be harmful. Our evaluation results demonstrate that 1)
with precision higher than 94.9%, our approach is able to approve
52% to 60% cloning operations for the two projects in the conser-
vative scenario, and 2) by blocking only 15% to 34% of cloning
operations for the two projects, our approach is able to avoid 48%
to 67% of harmful cloning operations in the aggressive scenario.

The main contributions of the this paper are as follows:
• A demonstration of the feasibility to predict harmfulness of

intended cloning operations.
• A harmfulness predictor for cloning operations based on Bayesian

Networks using three groups of features that characterize the
code to be cloned and the context of the cloning operations.

• A detailed evaluation of the proposed harmfulness predictor

using two large-scale industrial software projects under two
usage scenarios.

We organize the rest of this paper as below. In Section 2, we
provide two examples of harmful and harmless cloning operations.
In Section 3, we present our approach in detail. In Section 4,
we present an evaluation of our approach using industrial software
projects. We discuss some related issues in section 5. We introduce
related work in Section 6 and present future works in Section 7. Fi-
nally, we conclude this paper in Section 8.

2. EXAMPLES
In this section, we present two examplary cloning operations,

which are both from the code base of the first project used in our
evaluation. The first example depicts a typical harmful cloning op-
eration and the second example depicts a typical harmless cloning
operation. These two examples reveal some clues that harmful and
harmless cloning operations may have different characteristics.

In the first example, the developer copied 23 lines of code (i.e.,
Code Snippet 1) and pasted the copied code into the same method
with slight revision (i.e., Code Snippet 2). After the copy-and-
paste operation, the two clone segments experienced four consis-
tent changes, which happened 2, 12, 32, and 33 months later, re-
spectively. The first is to change variable cockpitServers in
Line 3 and other two similar local variables (in Lines 5 and 7)
to field variables. The second is to change the constant “PPE” to
“BLU” to adapt to the change of naming rules on the server side.
The third is to add a function invocation to the configuration fetch-
ing part (from Line 2 to Line 7). The fourth is to change the name of
LogLevel.Warning in Line 21. From this example, we can iden-
tify two factors for consistent changes. First, the copy-and-paste
is local so that the copied and pasted code pieces share many local
variables. Second, the clone segments interacts with the configura-
tion and static fields so that changes on the configuration or static
fields may impact both clone segments simultaneously.
Code Snippet 1:
1 try{
2 cockpitServers["PPE"] = Config.GetParameter(
3 c_iqmFile,"PPE","cockpitServer",c_ppeCockpitServer);
4 cockpitPorts["PPE"] = Config.GetIntParameter(
5 c_iqmFile,"PPE","cockpitPort",c_ppeCockpitPort);
6 collectionDirs["PPE"] = Config.GetParameter(
7 c_iqmFile,"PPE","collectionDir",c_ppeCollectionDir);
8 if (Config.GetIntParameter(
9 c_iqmFile,"PPE","rankDataAvailable",
10 c_ppeRankDataAvailable) == 1){
11 m_numCollections++;
12 rankDataAvailable["PPE"] = true;
13 }
14 if (Config.GetIntParameter(
15 c_iqmFile,"PPE","crawlDataAvailable",
16 c_ppeCrawlDataAvailable) == 1){
17 m_numCollections++;
18 crawlDataAvailable["PPE"] = true;
19 }
20}catch{
21 Logger.Log(LogID.IQM,LogLevel.Warning,
22 "Unable to get cockpitServer or cockpitPort for PPE");
23}

Code Snippet 2:
1 try{
2 cockpitServers["PROD"] = Config.GetParameter(c_iqmFile,
3 "PROD","cockpitServer",c_productionCockpitServer);
4 cockpitPorts["PROD"] = Config.GetIntParameter(c_iqmFile,
5 "PROD","cockpitPort",c_productionCockpitPort);
6 collectionDirs["PROD"] = Config.GetParameter(c_iqmFile,
7 "PROD","collectionDir",c_productionCollectionDir);
8 if (Config.GetIntParameter(
9 c_iqmFile,"PROD","rankDataAvailable",
10 c_productionRankDataAvailable) == 1){
11 m_numCollections++;
12 rankDataAvailable["PROD"] = true;
13 }

14 if (Config.GetIntParameter(
15 c_iqmFile,"PROD","crawlDataAvailable",
16 c_productionCrawlDataAvailable) == 1){
17 m_numCollections++;
18 crawlDataAvailable["PROD"] = true;
19 }
20}catch{
21 Logger.Log(LogID.IQM,LogLevel.Warning, "Unable
22 to get cockpitServer or cockpitPort for production");
23}

In the second example, the developer copied 16 lines of code
(depicted below) and pasted it into another method in another file
without changes. The clone group generated by the copy-and-paste
operation remained unchanged for 3 years until the module contain-
ing this clone group was completely removed. From this example,
we may identify the following factors for harmless cloning opera-
tions. First, the copied code piece is pasted to another method in
another file. Therefore, the resultant clone segments do not share
local methods and variables. Second, the code piece contains only
library function calls so that it has relatively less dependence on
other modules and is unlikely to be affected by a change in other
modules. However, this piece of code still has some dependence on
the other part of the project. For example, sSource is a function
parameter, which depends on its calling modules.
1 if (c >= sSource.Length ||
2 (c == sSource.Length - 1 && sSource[c] == ’&’)){
3 break;
4 }
5 if (sSource[c] == ’&’){
6 try{
7 if (sSource[c+1] == ’q’ && sSource[c+2] == ’=’ &&
8 sTag.ToLower() == "&q="){
9 c += 3;
10 }else{
11 break;
12 }
13 }catch (Exception e){
14 Console.WriteLine(e.Message);
15 }
16}

The preceding two examples demonstrate that there do exist some
clues in cloning operations that relate to their harmfulness. For ex-
ample, more dependence of the code to be cloned on other code
may indicate more likelihood of being harmful. Therefore, it should
be feasible for us to determine the harmfulness of an intended cloning
operation at the stage of copy-and-paste. However, the preceding
two examples also demonstrate that it might be difficult to ob-
tain simple discriminative rules based on the clues. As a result,
given that the version histories of existing software projects record
a large number of cloning operations and the evolution of the resul-
tant code clones over time, it is a reasonable choice to leverage a
machine-learning based technique to learn an effective harmfulness
predictor from the evolution histories of existing code clones.

3. APPROACH
In this section, we first give an overview of our approach. We

then present how we extract features for code cloning operations
and construct the predictor based on the historical code cloning op-
erations extracted from version history. We also present the scenar-
ios that our predicting approach can be applied to help developers.

3.1 Overview
The basic idea of our approach is to transform the problem of

predicting the harmfulness of intended cloning operations into a
problem of learning a prediction model from existing data of per-
formed cloning operations. In particular, we adopt a machine-
learning technique named Bayesian Networks. Developed in the
late 1980s [2], Bayesian Networks provide a mathematical model
to predict the probability of an event based on the happening of

other observable events. Formally, a Bayesian Network is a di-
rected acyclic graph, in which each node represents an event, and
the weight on the edge from node A to node B represents the condi-
tional probability of event B provided that event A happens. There-
fore, given a Bayesian Network, it is easy to calculate the probabil-
ity of an event based on the parent nodes of the event’s correspond-
ing node, if all the parent nodes are observable.

To build a Bayesian Network for predicting the harmfulness of
cloning operations, we need to decide the nodes, the structure, and
the weights on the edges in the Bayesian Network. In our problem,
the nodes correspond to the events that relate to the harmfulness of
cloning operations. To decide the nodes, we collect a number of
observable events (i.e., the features described in Section 3.2) that
may be related to the harmfulness of intended cloning operations
by observing existing cloning operations.

After deciding the nodes in the Bayesian Network, we need to
learn the structure and weights of the Bayesian Network from a
number of training instances. A training instance is a vector that
indicates whether each event happens. The typical algorithm for
learning the structure of a Bayesian Network is the K2 algorithm [3],
which tries to maximize the maximal probability of the training in-
stances for all possible weights. The typical algorithm for learning
the weights of a Bayesian Network is the maximum likelihood ap-
proach [3], which tries to maximize the probability of the training
instances. In our approach, we also rely on these two algorithms3

to construct the Bayesian Network from a number of cloning op-
erations whose features and harmfulness are already known. In
Section 3.3, we present how we determine the features and harm-
fulness of already performed cloning operations via analyzing the
historical versions of software projects.

After constructing the Bayesian Network, we use it to predict
the harmfulness of intended cloning operations. In Section 3.4, we
present the details of applying the constructed Bayesian Network.
We propose two scenarios in Section 3.5, where our predictor may
help developers make decisions about code cloning operations.

3.2 Considered Features
As mentioned in Section 3.1, our approach uses a set of features

to predict the harmfulness of intended cloning operations. Specif-
ically, we use 21 features in total, which can be divided into three
categories: history features, code features, and destination features.

3.2.1 History Features
The reason for using history features is to consider the maturity

of the copied piece of code. Intuitively, when a developer perform
copy-and-paste, if the copied piece of code is mature and has few
bugs, the resultant clone segments will be likely to have few bugs
and will not experience many bug-fixing changes in the future. The
maturity of a piece of code can be related to the time and the num-
ber of changes it experienced. Therefore, we consider the following
six history features.

• Existence Time (denoted as ET): The period between the
time of the appearance of the copied piece of code in the
code base and the time of the cloning operation.

• Number of Changes: The number of changes that the copied
piece of code has experienced in its evolution history.

• Number of Recent Changes: The number of changes that the
copied piece of code has experienced recently. Currently, we
deem 1/4 of ET to be recent.

• File Existence Time (denoted as FET): The period between
the time of the appearance of the file containing the copied
piece of code and the time of the cloning operation.

3Specifically, our approach uses the implementation in Weka [5].

• Number of File Changes: The number of changes that the
file containing the copied piece of code has experienced in
the evolution history of the file.

• Number of Recent File Changes: The number of changes that
the file containing the copied piece of code has experienced
recently. Again, we currently deem 1/4 of FET to be recent.

Among the six history features, the first three features aim to
characterize the changes to the copied piece of code itself, and the
other three features aim to characterize the changes to the file con-
taining the copied piece of code.

3.2.2 Code Features
The reason for using code features is to consider the impact of

the syntactical characteristics of the copied piece of code on the
harmfulness of the cloning operation. As demonstrated in the ex-
amples in Section 2, if the copied piece of code does not depend on
many other parts in the code base, the clone group generated by the
cloning operation will not be very likely to experience changes due
to revisions in other parts of the code base. Therefore, we consider
the following eight code features.

• Number of Lines: The number of lines in the copied piece of
code.

• Number of Invocations: The number of all method invoca-
tions in the copied piece of code.

• Number of Library Invocations: The number of library-method
invocations in the copied piece of code.

• Number of Local Invocations: The number of invocations of
methods defined in the same class with the copied piece of
code.

• Number of Other Invocations: The number of invocations of
methods that are neither from the library nor defined in the
same class with the copied piece of code.

• Number of Field Accesses: The number of field accesses in
the copied piece of code.

• Number of Parameter Accesses: The number of accesses to
method parameters in the copied piece of code.

• Whether it is Test Code4: Whether the copied piece of code
belongs to test code.

The considered code features aim to characterize different ways
the copied piece of code may depend on other parts. As we do not
know how each type of dependency impacts the harmfulness be-
forehand, we consider all these features and rely on the construc-
tion algorithm of the Bayesian Network to weight these features.

3.2.3 Destination Features
The reason for using destination features is to consider the simi-

larity between the context of the copied piece of code and the con-
text of the destination of pasting. Intuitively, if the context of the
pasting destination is more similar to the context of the copied piece
of code, the clone group generated by the operation may be more
likely to experience consistent changes in the future. This is be-
cause the two clone segments may share more common dependen-
cies and usages, so that changing these dependencies and usages
may impact both clone segments. Therefore, we consider the fol-
lowing seven destination features5.
4In Microsoft, the code base of a software project typically contains
a large proportion of test code. The dependence of test code on
other code may typically be different from that of product code.
5It is possible that one cloning operation has multiple destinations.
In such a case, for a boolean feature, we set the value of the feature
as true if the feature is true for at least one destinations, and for a
numeric feature, we acquire the feature for each destination, and
use the maximal one as the feature of the cloning operation.

• Whether to Be Local Clone: Whether the pasting destination
and the copied piece of code are in the same file.

• File Name Similarity: The similarity between the name of
the file containing the copied piece of code and the name
of the file containing the pasting destination. Currently, we
use the Levenshtein distance based similarity [16]. In all the
following features, we also use the Levenshtein distance to
measure similarities between strings.

• Masked File Name Similarity: A variant of File Name Simi-
larity. When the clone is local, the File Name Similarity has
to be 1. But the meaning is quite different from where the
File Name Similarity is close to 1. Therefore, we also use
another feature for file name similarity. For this feature, the
value is the same with File Name Similarity when the cloning
is not local, but 0 when the cloning is local.

• Method Name Similarity: The similarity between the name
of the method containing the copied piece of code and the
name of the method containing the pasting destination.

• Sum of Parameter Similarities (denoted as SPS): Let us use
M1 and M2 to denote the method containing the copied piece
of code and the method containing the pasting destination,
respectively. Supposing that M1 have m parameters (whose
names are denoted as P1, P2, ..., Pm) and M2 have n pa-
rameters (whose names are denoted as Q1, Q2, ..., Qn), we
define SPS as

∑m
i=1

∑n
j=1 Sim(Pi, Qj)), where Pi denotes

the name of the i-th parameter of M1 and Qj denotes the
name of the the j-th parameter of M2.

• Maximal Parameter Similarity (denoted as MPS)6: We define
MPS to be Max(Sim(Pi, Qj)), where 1<=i<=m, 1<=j<=n,
and Sim(x, y) denotes the similarity between string x and
string y.

• Difference in Only Postfix Numbers7: Whether the name
of the method containing the copied piece of code and the
name of the method containing the pasting destination differ
in only their postfix numbers.

Again, when selecting destination features, we only consider
whether each feature might be related to the harmfulness of cloning
operations. We rely on predictor construction to further sort out the
relationships between the features.

3.3 Constructing the Harmfulness Predictor
We use the following three steps to construct our harmfulness

predictor. First, we use a clone detector to identify a number of
cloning operations performed in the version histories of existing
software projects. Second, for each cloning operation acquired in
the first step, we determine the values of the 21 features of the
cloning operation and whether the cloning operation is harmful or
harmless, thus forming a training instance. Third, we construct the
Bayesian Network based on the training instances.

3.3.1 Collecting Existing Cloning Operations
To collect the cloning operations performed in the history of a

software project, we first download all the historical versions of
the software project and perform clone detection on each of these
versions. Then, by mapping code location (paths and file names) of
6We further consider the maximal parameter similarity because
usually one pair of very similar parameters may be more informa-
tive than several pairs of moderately similar parameters.
7We use this feature because developers often use a list of methods
with different postfix numbers in their names to indicate different
versions of a same method. This list of methods often contain many
code clones but these clones seldom change consistently because
only the method with the largest version number is going to change.

the code clones between each version and its previous version [4],
we build a clone evolution genealogy. A clone evolution genealogy
consists of a number of clone family trees, each of which represents
the history of one clone group. Each node in a clone family tree
corresponds to a clone group in a certain version of the project. In
a clone family tree, the root node corresponds to a clone group that
cannot be mapped to any clone groups in the previous version. If a
clone group p in a version vi can be mapped to another clone group
p′ in the previous version vi−1, then the node corresponding to p is
the child of the node corresponding to p′ in a clone family tree.

After building the clone genealogy, we collect all the clone groups
that correspond to the root nodes of clone family trees. Since these
clone groups cannot be mapped to any clone groups in the previous
version, we deem these clone groups as newly added by the devel-
opers through cloning operations. We refer to these clone groups
as original clone groups in the rest of this paper. This means that,
each original clone group corresponds to a cloning operation.

To precisely characterize a cloning operation, we need to deter-
mine which clone segment in an original clone group is the copied
piece of code and which clone segment contains the pasting desti-
nation. Specifically, we use the following two heuristics.

• If one of the clone segment seg in an original clone group
can be mapped to a code segment in the previous version, we
determine that seg is the copied piece of code.

• If none of the clone segments can be mapped to a code seg-
ment in the previous version, we randomly choose a clone
segment as the copied piece of code, because in this case, it is
difficult to decide which segment is added first. Furthermore,
choosing any segment as the copied piece has relatively small
effects to our approach because these code segments have ex-
actly the same history features, and usually have similar code
features and target features.

Note that it is unlikely that more than one clone segment in an
original clone group can be mapped to a code segment in the pre-
vious version. If so, the two mapped code segments in the previous
version should be a clone group in the previous version. Thus, the
existence of such a clone group is contradictory to our definition of
original clone groups.

3.3.2 Determining Feature Values and Harmfulness
of Cloning Operations

To use the collected cloning operations as training instances for
constructing our harmfulness predictor, we also need to determine
the values of the features and the harmfulness of each collected
cloning operation. To determine the values of the features, we an-
alyze the version that the cloning operation is performed on to ex-
tract the values of the features for the cloning operation. Since it
is common for developers to make multiple changes between two
continuous versions and it is difficult to decide the order of the
changes, we simply assume that any other changes will not impact
the features of the cloning operations. Note that, although our as-
sumption for simplicity may introduce some noise into our training
data, the used machine-learning technique can mitigate the impact
of the noise in the training process.

As it is difficult to precisely measure the harmfulness of the train-
ing instances without human intervention, we just classify the train-
ing instances into harmful cloning operations and harmless cloning
operations for simplicity. So, the harmfulness of a training instance
is either 0 (for harmful) or 1 (for harmless). This simplification
may introduce some noise and we rely on the training process to
deal with the noise. We automatically determine the harmfulness
of a training cloning operation based on the genealogy of the cor-
responding original clone group using the following heuristics:

• If the clone group experiences no change or only inconsis-
tent changes in the genealogy, we deem the corresponding
cloning operation to be harmless.

• If the clone group experiences at least one consistent change,
we deem the corresponding cloning operation to be harmful.

Based on the heuristics, each code cloning operation will be la-
beled as either harmless or harmful. The consideration behind our
heuristic is that one consistent change can indicate extra mainte-
nance cost caused by code cloning operation. It is possible to ap-
ply our approach with other heuristics such as treating as harmful
only the cloning operations whose resulting clone groups experi-
ence consistent changes more than twice.

To check whether and how a clone group changes in its geneal-
ogy, we adopt a procedure used in existing empirical studies on
code clones [4]. For a cloning operation op, our approach checks
the nodes in the clone family tree T, whose root node corresponds
to the original clone group origin generated by op. Obviously, ex-
cept for the root node, each node N in T corresponds to a clone
group cg that is evolved from origin, and cg can be mapped to an-
other clone group cg−1 (which corresponds to N’s parent node in
T) in the version prior to the version containing cg. Thus, we com-
pare the clone segments in cg and cg−1 to see whether at least two
segments in cg are changed from their corresponding segments in
cg−1. If so, we deem that a consistent change happens on cg−1.
Otherwise, we deem that there is no change or only an inconsistent
change.

3.3.3 Training the Predictor
After determining the values of the features and the label of

harmfulness for each collected cloning operation, we acquire a set
of training instances. Based on the training set, we construct a
Bayesian Network, which serves as our harmfulness predictor. Note
that the training process automatically deals with noise, irrelevant
features, and unorthogonal features.

3.4 Prediction
After constructing the harmfulness predictor, we use it to predict

the harmfulness of an intended cloning operation. When a devel-
oper intends to perform a cloning operation, our approach extracts
the values of its features and uses the trained predictor to predict its
harmfulness. Here, our harmfulness predictor provides a prediction
score which depicts the probability that the intended cloning oper-
ation is harmless. This score can thus help the developers to decide
whether to perform the cloning operation. In practice, there can
be an application-specific interpretation of the prediction scores to
further help developers make the decision.

3.5 Usage Scenarios
As mentioned in Section 1, we propose two scenarios where our

approach may help developers make decisions on whether to make
a code cloning operation or not.

• Conservative scenario. In this scenario, developers are cau-
tious and they only want to perform cloning operations when
it is almost certainly safe. They do not want to perform risky
code cloning operations.

• Aggressive scenario. In this scenario, developers may want
to perform as many cloning operations as possible for quick
development, due to a tight development schedule or other
reasons. Therefore they want to block only a small propor-
tion of the most risky cloning operations and avoid as many
harmful operations as possible.

Note that in these two scenarios our predictor provides sugges-
tions to developers when they are going to conduct a code cloning
operation. This is a proactive way for preventing harmful cloning

operations. Another possible way to check the harmfulness of a
code cloning operation is at the time after it is made but before the
cloned code is checked into the version control system. In this way,
once a cloning operation is predicted as harmful, the developer may
either take actions immediately to remove it and then check in the
revised code, or check in the code and conduct code refactoring op-
eration at an appropriate time in future. In this way, we may even
use the information of possible edits the developer makes after the
code cloning operation and thus enhance our approach. In this pa-
per, we do not use the information of further edits for prediction to
make our approach more general and applicable to both ways.

4. EVALUATION
In this section, we first introduce the methodology for our eval-

uation in Section 4.1. Then, we present the evaluation setup in
Section 4.2. We present our evaluation results in Sections 4.3, 4.4
and 4.5. We discuss the threats to validity in Section 4.6.

4.1 Methodology
We evaluate the effectiveness of our approach from the following

four perspectives.
Effectiveness for the conservative scenario. In the conserva-

tive scenario, we set a threshold (close to 1) and all the cloning op-
erations with a predicted harmfulness value higher than the thresh-
old are deemed as harmless cloning operations. Then we measure
the effectiveness of our approach using the two metrics below:

• Approval rate: the proportion of cloning operations that are
predicted as harmless in all cloning operations for prediction.

• Precision: the proportion of actually harmless operations in
the cloning operations that are predicted as harmless

In this scenario, developers do not want to concede risky cloning
operations while they can tolerate some potential harmless cloning
operations being blocked, so the precision is expected to be near
100% and the approval rate is not expected to be so high.

Effectiveness for the aggressive scenario. In the aggressive
scenario, we set a certain threshold (close to 0) and all the cloning
operations with a predicted harmfulness value lower than the thresh-
old are deemed as harmful cloning operations. Then, we measure
the effectiveness of our approach using the following two metrics:

• Blocking rate: the proportion of cloning operations that are
predicted as harmful in all cloning operations for prediction.

• Recall: the proportion of harmful operations that are pre-
dicted to be harmful in all actually harmful operations in the
cloning operations for prediction.

In this scenario, since developers pay more attention to perform-
ing as many cloning operations as possible and blocking only those
cloning operations predicted as harmful with high confidence, it is
expected that the recall value should be significantly much higher
than the value of the blocking rate.

Contributions of the three types of features. We studied the
impact of different feature groups on the effectiveness of our ap-
proach. This provides insight on how the underlying features con-
tribute to the predictor. We use the same metrics defined above to
understand the contributions of the three groups of features.

Feasibility for cross-project prediction. Moreover, develop-
ers may want to apply our approach on a new project that has a
too short version history for our approach to collect training data.
In such a case, one possible alternative solution would be cross-
project prediction, in which the historical cloning operations of one
project are used to predict the harmfulness of the cloning opera-
tions in another project. Therefore, we further investigate whether
our approach can help when performing cross-project prediction.

Table 1: Subject Software Projects Used in Our Evaluation
Project Start Date End Date KLOC
XProj Oct-31-2005 Dec-27-2010 0 to 4,521
YProj Oct-01-2007 Dec-27-2010 987 to 1,073

4.2 Evaluation Setup
We carried out our evaluation on two large industrial software

projects from Microsoft (denoted as XProj and YProj in this pa-
per, respectively)8. We chose the two projects for the following
three reasons. First, both of the software projects have large code
bases with 1-4 millions lines of code. Therefore, the evaluation
results on these two projects may likely be generalizable to typ-
ical large industrial software projects. Second, both of the soft-
ware projects have relatively long version histories, which enable
us to extract enough cloning operations and precisely determine
the harmfulness of the operations to build our training and test-
ing sets. Third, the two projects belong to different domains and
are in different development phases. XProj is a completely new
project at Microsoft, launched in 2005, so its version history mainly
records the initial development phase. In contrast, YProj is de-
veloped based on the code of a previous version of YProj, so its
version history mainly records the re-engineering and maintenance
phase. Therefore, we can check the effectiveness of our approach
on both phases. The information about the two software projects is
shown in Table 1. The second column of Table 1 presents the start
date of each project. The third column presents the date of the last
version of each project used for our evaluation. The fourth column
presents the size range of each project (in KLOC, i.e., kilo lines of
code) between the start date and the end date in columns 2 and 3.

For each software project, we downloaded all the versions (i.e.,
weekly snapshots) during the life time of the software project. We
used weekly snapshots because the numbers of code submissions
for these two projects are extremely huge and it is difficult to pro-
cess them one by one in reasonable time. Then, we extracted cloning
operations (using the process described in Section 3.3.19) from all
the downloaded versions before December 31st, 2008. We col-
lected cloning operations from only these older versions (which had
existed in the software projects for more than two years) because
there may not be enough time for us to observe consistent or incon-
sistent changes in newly generated clone groups. It should be noted
that two years may not be a precise time slot and further investiga-
tion may be needed. However, our statistics show that, the data
between Dec-27-2009 and Dec-27-2010 only helps reveal 8 (0.3%)
of 2913 and 0 of 325 once-viewed-as-harmless cloning operations
to become harmful in XProj and YProj, respectively. So we believe
that our labeling should induce very small error rates. After that,
we extracted the harmfulness label and values of the features of all
these collected cloning operations (as described in Section 3.3) to
build a data set, which provides both the training data and the test-
ing data. Finally, we performed 10-cross validation [6] on the data
set to acquire the effectiveness of our approach. In our implementa-
tion, we used Weka 3.7 [5] to construct the Bayesian Network and
set the weights. Table 2 depicts the details about the data sets that
we extracted from the two software projects. In Table 2, columns
1-5 present the project name, the number of versions from which
we extracted cloning operations, the number of collected cloning
operations, the number of harmful cloning operations, and the num-
ber of harmless cloning operations. The numbers in the bracket in

8According to Microsoft regulations, we are unable to disclose the
names and the application domains of the two projects.
9In the code clone detection step, we used a near-miss code clone
detector from Microsoft [18], with the default setting of the tool,
i.e., detecting code clones with no less than 20 lines of code.

Table 2: Details of the Extracted Data Sets
Project #Versions #Cloning #Harmful #Harmless

Operations (%) (%)
XProj 219 3407 502(14.7%) 2905(85.3%)
YProj 117 401 76(19.0%) 325(81.0%)

Table 3: Effectiveness in the Conservative Scenario
Project (Threshold) Approval Rate Precision

XProj(0.99) 41.3% 96.4%
XProj(0.95) 60.1% 94.9%
XProj(0.90) 67.0% 93.9%
XProj(0.85) 68.7% 93.7%
XProj(0.80) 71.0% 93.2%
YProj(0.99) 46.6% 96.3%
YProj(0.95) 51.9% 95.7%
YProj(0.90) 54.4% 94.0%
YProj(0.85) 55.4% 94.1%
YProj(0.80) 56.4% 93.4%

columns 4-5 present the proportion of harmful and harmless oper-
ations in all cloning operations, respectively.

From Table 2, we have two observations. First, in both software
projects, the numbers of harmless cloning operations are much greater
than the numbers of harmful cloning operations. This observation
is consistent with the findings of the empirical study by Gode and
Koschke [7]. Second, YProj has fewer cloning operations com-
pared with XProj. The reason is that YProj is in the re-engineering
phase, so there is less newly added code and thus fewer cloning op-
erations. Note that we did not collect cloning operations from code
clones that exist in the initial version of YProj, because in such a
case we were unable to accurately determine the harmfulness or the
values of the features of those cloning operations.

4.3 Effectiveness in the Two Scenarios
Table 3 depicts the effectiveness of our approach for the conser-

vative scenario using the following threshold values: 0.8, 0.85, 0.9,
0.95, and 0.99. In Table 3, column 1 presents the combination of
the project and the threshold value, column 2 presents the approval
rate, and column 3 presents the precision of our approach.

From Table 3, we have the following observations. First, with
the threshold value of 0.95, our approach is able to predict about
50% to 60% of the cloning operations as harmless with a precision
higher than 94.9%. This demonstrates the value of our approach in
the conservative scenario: Our approach provides a quite accurate
suggestion of which cloning operations are safe while still allowing
more than 50% of the cloning operations. Without our approach, it
is difficult for developers to make such decisions with confidence.
For example, we can treat all the 3407 cloning operations in proj X
as "approved" cloning operations based on the judgement of de-
velopers of proj X, since they have been already checked in to
the version control system of proj X. However, as shown in Table
3, the precision of "prediction" by developers is 85.7%, which is
much lower than the precision of our approach. Therefore, our ap-
proach provides conservative developers a guidance for approving
only harmless cloning operations with high precision.

Table 4 depicts the effectiveness of our approach for the aggres-
sive scenario using the following threshold values: 0.1, 0.2, 0.3,
0.4, and 0.5. In Table 4, column 1 presents the combination of
the project and the threshold value, column 2 presents the blocking
rate, and column 3 presents the recall.

From Table 4, we have the following two observations. First,
with all the threshold values, our approach is able to avoid a large
proportion of harmful cloning operations by blocking a much smaller
proportion of cloning operations. For example, with the threshold

Table 4: Effectiveness in the Aggressive Scenario
Project (Threshold) Blocking Rate Recall

XProj(0.1) 7.3% 33.9%
XProj(0.2) 11.9% 45.0%
XProj(0.3) 14.5% 48.6%
XProj(0.4) 18.1% 57.0%
XProj(0.5) 19.7% 59.0%
YProj(0.1) 23.2% 55.3%
YProj(0.2) 30.7% 64.5%
YProj(0.3) 34.4% 67.1%
YProj(0.4) 38.2% 69.7%
YProj(0.5) 39.9% 72.4%

Table 5: Precision of the Three Variants in the Conservative
Scenario

Project All Without Without Without
(Approval Rate) History Code Destination

XProj(50%) 95.8% 95.6% 95.9% 92.7%
XProj(60%) 94.9% 94.5% 94.8% 92.5%
XProj(70%) 93.4% 93.4% 92.2% 92.1%
YProj(50%) 96.5% 95.0% 95.5% 93.5%
YProj(60%) 91.3% 91.3% 91.3% 91.3%
YProj(70%) 90.0% 90.0% 89.6% 87.5%

value of 0.3, our approach is able to avoid 48.6% of the harmful op-
erations in XProj by blocking only 14.5% of all cloning operations,
and avoid 67.1% of the harmful operations in YProj by blocking
only 34.4% of all cloning operations. This demonstrates the value
of our approach in the aggressive scenario: With our approach, de-
velopers may miss a small percentage of cloning operations while
still blocking a significant percentage of harmful cloning opera-
tions. Without our approach, the blocking rate and the recall should
be about the same, as the data used in our evaluation already reflects
the practice of developers to perform cloning operations. Second,
the experimental results for the two projects have different blocking
rate for a same threshold. This indicates that a different threshold
may be used for a different projects to better utilize our approach.

4.4 Impacts of Feature Groups
As our approach uses three groups of features to predict harm-

fulness of cloning operations, we removed each group of features
at one time to check how each group of features contribute to the
overall effectiveness of our approach. We experimented with three
variants of our approach, each using two groups of features. Again,
we considered two scenarios: the conservative scenario and the
aggressive scenario.

With a fixed threshold, it may be difficult to compare the differ-
ent variants of our approach. For example, when under a certain
threshold, variant A can avoid 10% of harmful cloning operations
by blocking 5% of cloning operations, while variant B can avoid
20% of harmful cloning operations by blocking 10% of cloning
operations. It would be difficult to judge which variant is better.
Therefore, in the comparison, we fixed the approval rate as 50%,
60%, and 70% (i.e., in the approval rate range of our approach us-
ing thresholds between 0.8 and 0.99) for the conservative scenario
and fixed the blocking rate as 10%10, 20%, and 30% (i.e., in the
blocking rate range of our approach using thresholds between 0.1
and 0.5) for the aggressive scenario. Tables 5 and 6 depict the re-
sults of comparing the three variants together with our approach
(i.e., using all three groups of features) for the two projects.

From Tables 5 and 6, we have the following observations. First,

10Note that blocking 10% cloning operations is equivalent to ap-
proving 90% cloning operations.

Table 6: Recall of the Three Variants in the Aggressive Scenario
Project All Without Without Without

(Blocking Rate) History Code Destination
XProj(10%) 41.2% 40.4% 28.7% 33.3%
XProj(20%) 59.4% 57.6% 54.8% 51.2%
XProj(30%) 68.5% 68.5% 62.7% 62.5%
YProj(10%) 32.9% 34.2% 15.8% 26.3%
YProj(20%) 53.9% 53.9% 35.5% 39.5%
YProj(30%) 63.2% 63.2% 61.8% 53.9%

Table 7: Effectiveness for Cross-Project Prediction in the Con-
servative Scenario

Setting(Threshold) Approval Rate Precision
XProj-YProj(0.99) 52.4% 93.8%
XProj-YProj(0.95) 61.6% 91.5%
XProj-YProj(0.90) 66.3% 90.2%
XProj-YProj(0.85) 67.8% 89.3%
XProj-YProj(0.80) 70.3% 88.7%
YProj-XProj(0.99) 22.5% 95.3%
YProj-XProj(0.95) 33.1% 94.1%
YProj-XProj(0.90) 40.8% 94.4%
YProj-XProj(0.85) 41.2% 94.4%
YProj-XProj(0.80) 43.6% 94.3%

removing the history features has small impacts on the prediction in
both scenarios. Second, removing the destination features results in
significantly negative impacts on the effectiveness in both scenar-
ios. Third, removing the code features results in a small impact
in the conservative scenario but a significantly negative impact in
the aggressive scenario. Fourth, removing some features may even
slightly improve the results in some scenarios due to possible noise
in those features. These observations indicate that it may be fea-
sible to use only the code features and the destination features to
predict harmfulness of intended cloning operations.

4.5 Effectiveness of Cross-Project Prediction
In Section 4.3, our cross-validation is based on each project indi-

vidually. For each subject project, we divided the collected cloning
operations into the training set and the testing set. Then we used
the training set to train a predictor and tested it on the testing set.
However, if developers would like to leverage our approach at the
beginning of their project, there will not be enough training data
from the project. In such a case, the developers may have to use a
predictor trained from the data of another software project, which
we referred to as cross-project prediction. Cross-project prediction
is notoriously difficult for many mining based software engineer-
ing approaches [1], since software projects are often largely differ-
ent from each other in their usages, structures, programming rules,
etc. What makes the situation even worse is that it is difficult to
measure and handle such difference in various aspects. Therefore,
it would be interesting to study whether our approach still provides
some help for cross-project prediction.

To perform cross-project prediction, we evaluated our approach
by training our predictor with the data from XProj and test the pre-
dictor on YProj, and vice versa. Tables 7 and 8 depict the results of
cross-project prediction in the two scenarios, respectively. In both
tables, we use XProj-YProj to denote training on XProj and testing
on YProj, and YProj-XProj to denote the opposite.

From Table 7, we can observe that, with the threshold 0.95, for
the setting of XProj-YProj our approach can approve 60% cloning
operations with a precision of 91.5%, and for the setting of YProj-
XProj, our approach can approve 33.1% cloning operations with a
precision of 94.1%. Compared with Table 3, we can observe that

Table 8: Effectiveness for Cross-Project Prediction in the Ag-
gressive Scenario

Setting(Threshold) Blocking Rate Recall
XProj-YProj(0.1) 0.5% 1.3%
XProj-YProj(0.2) 3.0% 3.9%
XProj-YProj(0.3) 4.0% 5.3%
XProj-YProj(0.4) 5.5% 7.9%
XProj-YProj(0.5) 16.5% 32.9%
YProj-XProj(0.1) 22.9% 52.3%
YProj-XProj(0.2) 33.3% 67.3%
YProj-XProj(0.3) 34.0% 68.1%
YProj-XProj(0.4) 42.3% 72.1%
YProj-XProj(0.5) 45.7% 77.9%

the effectiveness of our approach on cross-prediction drops. How-
ever, in YProj, the proportion of harmless is 81%, and in XPoj, the
proportion is 85.5%. Therefore, our approach can still enhance the
precision by 10.5% for YProj, and 8.6% for XProj, compared to
random selection (note that the improvement is not trivial consid-
ering that the precision is already very high). Furthermore, with
the threshold 0.99, our approach with the XProj-YProj setting may
approve more than 50% of cloning operations with a precision of
93.8%, and with the threshold 0.8, our approach with the YProj-
XProj setting may approve more than 43% of cloning operations
with a precision of 94.3%. This observation demonstrates that our
approach has the potential to be used in cross-project prediction in
practice if developers can appropriately tune the threshold to keep
an appropriate blocking rate.

Similarly, comparing Table 8 and Table 4, we can observe that
our approach is also significantly less effective in the aggressive
scenario for cross-project prediction than for inner-project predic-
tion. With threshold 0.3, for the setting of XProj-YProj, our ap-
proach blocks 4% cloning operations to avoid 5.4% of harmful
cloning operations, and for the setting of YProj-XProj our approach
blocks 34.0% to avoid 68.1% harmful cloning operations. How-
ever, for the setting of YProj-XProj, our approach still achieves a
100% improvement over random selection, and for the setting of
XProj-YProj, our approach may achieve a similar improvement if
the threshold is appropriately tuned.

In summary, empirical results presented in this subsection indi-
cate that our approach is able to provide some help for cross-project
prediction, and have a large space of enhancement if developers can
appropriately tune the threshold. Furthermore, it should be noted
that, as we used two quite different projects in our evaluation, our
cross-prediction had to be based on training on one project and
testing on the other project and thus concede significant negative
impacts induced by project differences. In practice, we may use
multiple projects similar to the target project for training so that
the trained predictor is more suitable for the target project. Fur-
thermore, as our approach is based on machine learning, it is also
possible to gradually add cloning operations performed in the target
project into the training set to make the training process adaptable
to the target project. We expect these enhancements to further boost
our approach for cross-project prediction.

4.6 Threats to Validity
In our evaluation, we applied our approach to the version histo-

ries of two software projects. This factor may be a threat to exter-
nal validity, since it is possible that our empirical results are spe-
cific to the two software projects used in our evaluation and may
not be generalizable to other projects. To reduce this threat, we
chose large industrial software projects as subjects from different
domains. The main threats to internal validity is the unintentional

inconsistent changes (i.e., inconsistency bugs) which may lead us
to erroneously mark a cloning operation as harmless. However, we
believe that, for developers, the probability of bringing in incon-
sistency bugs is much less than the probability of correctly main-
taining the consistency. Recent studies [8] also support this be-
lief. Another threats to internal validity is that we use a limited
observation time slot to decide whether a code clone experiences
inconsistent changes, which also may lead us to erroneously mark
a cloning operation as harmless. To reduce this threat, we use a
relatively long observation time slot (two years), and our study in
Section 4.2 shows that such long time slot will bring in few er-
rors in marking cloning operations. The main threats to construct
validity is that we used cloning operations recovered from the ver-
sion histories as the training set and the testing set. There might be
slight differences between feature values of recovered cloning op-
erations and feature values of intended cloning operations because
there was some information loss in the version history (e.g., for si-
multaneously added clone segments, we randomly choose one as
the copied piece of code, which may be not the case). However, we
believe that this threat to construct validity should not have dras-
tic impacts on the effectiveness of our approach since the resulting
differences in feature values are typically small.

5. DISCUSSION
Kasper and Godfrey classified cloning operations into three cat-

egories according to their purposes [24]. The three categories are
forking clones, templating clones, and customization clones. In
forking clones, developers clone a large component for a new envi-
ronment or different users. In templating clones, developers clone
a piece of code elsewhere to perform similar functions, such as
copying the sorting method from a class for the author list to a
class for the paper list. Customization clones are similar to tem-
plating clones except that customization clones require revisions
after the cloning. Actually, the effectiveness of feature groups in
our approach may differ for different categories of clones. For ex-
ample, for forking clones, history features and code features may
be more important, because in such clones, instability and depen-
dence on components unrelated to the environment are key factors
for consistent changes. By contrast, for templating clones, destina-
tion features may be important since similar contexts will enhance
the likelihood of consistent changes. For customization clones, his-
tory features and code features sometimes may be misleading be-
cause the revisions in the cloned code affect the precision of these
two features, while destination features may remain discriminative.
Therefore, we may further improve our approach by considering
Kasper and Godfrey’s clone categories, if we are able to automati-
cally identify the category of cloning operations.

6. RELATED WORK
To the best of our knowledge, the research presented in this pa-

per is the first automatic approach that predicts the harmfulness
of intended cloning operations. Our research is motivated by the
findings of recent empirical studies on code clones, and we also
use some existing techniques to process code clone genealogies.
Kim et al. [4] first combined code clone detection tools and ver-
sion history analysis tools to extract code clone genealogies. Based
on clone genealogies, they discovered that it is not always worth-
while to refactor code clones. Kapser and Godfrey also studied
code clones in existing software projects and classified clones into
categories [24]. Juergens et al. studied a large number of code
clones in software projects to find the reasons why developers pre-
fer code clones [25]. Gode and Koschke [7] reported another em-
pirical study on code clone genealogies. In their study, they dis-
covered that only less than half of code clones will experience

changes and even a smaller proportion will experience consistent
changes that lead to extra maintenance cost. Thummalapenta et
al. [8] performed an empirical study on the evolution patterns of
code clones. The major findings of their study include 1) that in
only a small number of cases, developers forget to make consis-
tent changes to code clones, and 2) that failing to propagate bug
fixes among code clone segments is the main reason for the “for-
gotten consistent changes”. Cai and Kim [9] empirically studied
long-lived code clones in software projects, and identified some
key features in the evolutionary history of a code clone that relate
to the existing time of the code clone. Our research differs from
the preceding research in the following two aspects. First, our ap-
proach aims to predict harmfulness of intended cloning operations,
while existing research does not provide explicit support for harm-
fulness prediction for code clones. Second, our approach targets
harmfulness prediction at copy-and-paste time and thus can utilize
only features available at copy-and-paste time, but existing research
does not distinguish copy-and-paste features from clone evolution
features and thus can hardly be applied to our problem.

Code clone detection, which is also closely related to our re-
search, has been a research focus for many years. Due to space
limit, we list only some of representative research in the area of
code clone detection. Kamiya et al. [11] developed CCFinder,
which transforms a program to tokens and detect clones by per-
forming token-by-token comparison. Li et al. [12] proposed CP-
Miner, which uses frequent sequence mining to identify similar
sequences in the tokenized program. Jiang et al. [13] proposed
Deckard, a syntax tree-based code clone detection tool, which dis-
covers similar tree structures in the syntax tree of the code base.
Later, researchers also developed approaches to find similar struc-
tures in system dependence graph of a software [14] [15]. Gable
et al. [14] simplified system dependence graphs of a software code
base to trees and use an algorithm similar to Deckard to detect sim-
ilar dependence structures. Recently, Kim et al. [17] proposed an
approach based on symbolic execution to detect semantic clones
in the code base. In our research, we used the CloneCodeDetec-
tor [18] from Microsoft for data collection in our evaluation, be-
cause CloneCodeDetector is scalable and stable enough to be effi-
ciently applied in more than 100 versions of the huge code bases of
the two projects used in our evaluation.

Another research area related to our research is machine-learning-
based defect prediction. Defect prediction approaches try to pre-
dict the number of defects in a given software component. Simi-
lar to our approach, machine-learning-based defect prediction also
relies on features extracted from code and version histories. Men-
zies et al. [19] proposed using multiple classifiers to predict de-
fects and evaluated their techniques on the NASA software defect
data. Emam et al. [20] compared different case-based classifiers
and concluded that varying combination of parameters of the clas-
sifier does not help to improve prediction precision. Kim et al. [21]
further studied the impact of noise in the training data on the ef-
fectiveness of defect prediction approaches. Compared to defect
prediction approaches, our approach targets at a different problem.
Furthermore, our approach uses a different set of features. Specif-
ically, among the three feature groups in our approach, our history
features are similar to history features used in defect prediction;
our code features focus on code dependence while code features in
defect prediction focus on code complexity and bad smells; desti-
nation features are specific to cloning operations.

7. FUTURE WORK
We deem the research presented in this paper as the first step

towards fully understanding the harmfulness of intended cloning

operations. The following directions for further research may help
overcome the limitations of our current research.

First, although our evaluation indicates that our harmfulness pre-
dictor can provide practical help for developers, there is still a large
space to improve our approach. In fact, when the prediction score
on the harmfulness of a cloning operation is between 0.5 and 0.8,
it is still difficult for us to accurately predict whether the operation
to be harmful or harmless. We plan to consider adding more fea-
tures and/or varying existing features to improve the effectiveness
of our approach. For example, we may use absolute time threshold
instead of relative time threshold when computing the number of
recent changes. Furthermore, besides considering the dependence
of the copied code piece, it may also be helpful to consider the
maturity and dependence of the code that the copied code piece
depends on.

Second, our current evaluation is based on only two Microsoft
software projects written in C#. It would be interesting to evaluate
our approach on more software projects, such as open source soft-
ware projects and/or software projects written in other languages.
Furthermore, our current evaluation mainly considers two practical
scenarios. To evaluate our prediction in more general scenarios, we
plan to involve more metrics such as F-score and Cohen’s Kappa
co-efficient [26] to further evaluate our approach.

Third, our evaluation includes a quantitative study on a number
of cloning operations in the version histories of software projects.
To fully reveal the strength and weakness of our approach, we plan
to design and conduct a number of qualitative case studies involv-
ing developers, so that we can further confirm whether the identi-
fied harmful/harmless cloning operations are consistent with devel-
opers’ feelings and/or identify more issues for developers to per-
form cloning operations.

8. CONCLUSION
In this paper, we have proposed a novel approach that assists

developers in understanding the harmfulness of intended cloning
operations using Bayesian Networks. Our approach may provide
guidance for developers on selectively performing cloning opera-
tions in a conservative or an aggressive way with a reduced cost of
maintenance. We have also evaluated our approach for both con-
servative and aggressive scenarios using two large-scale industrial
software projects from Microsoft. Our empirical results demon-
strate that our approach may be practically useful for both types
of scenarios: In the conservative scenario, our approach can ap-
prove 52% to 60% of harmless cloning operations with precision
higher than 94.9%. In the aggressive scenario, our approach can
block 48% to 67% of harmful cloning operations with the cost of
blocking only 15% to 34% of cloning operations.

Acknowledgments
The research is partially sponsored by the National Basic Research
Program of China (973) No. 2009CB320703, the Science Fund for
Creative Research Groups of China No. 61121063, and the Natural
Science Foundation of China No. 91118004.

9. REFERENCES
[1] Anvik, J., Hiew, L., Murphy, G. Who should fix this bug? In

ICSE, 361–370, 2006.
[2] Pearl, J. Bayesian Networks: A Model of Self-Activated

Memory for Evidential Reasoning, Proceedings of the 7th
Conference of the Cognitive Science Society, 329–334, 1988.

[3] Friedman, N., Geiger, D., and Goldszmidt, M. Bayesian
Network Classifiers, Machine Learning, 29(2-3), 131–163,
1997.

[4] Kim, M., Sazawal, V., Notkin, D., and Murphy, G. An
empirical study of code clone genealogies, In FSE, 187–196,
2005.

[5] Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B.,
Witten, I. H., and Trigg, L. Weka, Data Mining and
Knowledge Discovery Handbook, 1305-1314, 2005.

[6] Kohavi, R. A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection, In IJCAI,
1137–1145, 1995.

[7] Gode, N., Koschke, R. Frequency and risks of changes to
clones, In ICSE, 311–320, 2011.

[8] Thummalapenta, S., Cerulo, L., Aversano, L., and Penta, M.
D. An empirical study on the maintenance of source code
clones, Emprical Software Engineering, 15(1), 1–34, 2010.

[9] Cai, D., and Kim, M. An Empirical Study of Long-Lived
Code Clones, In FASE, 432–446, 2011.

[10] Baker, B. S. On finding Duplication and Near-Duplication in
Large Software System, In WCRE, 86–95, 1995.

[11] Kamiya, T., Kusumoto, S., Inoue, K. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code, TSE, 28(7), 654–670, 2002.

[12] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. CP-Miner: finding
copy-paste and related bugs in large-scale software code, TSE,
32(3), 176–192, 2006.

[13] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. DECKARD:
Scalable and Accurate Tree-Based Detection of Code Clones,
In ICSE, 96–105, 2007.

[14] Gabel, M., Jiang, L., and Su, Z. Scalable detection of
semantic clones, In ICSE, 321–330, 2008.

[15] Wang, X., Lo, D., Cheng, J., Zhang, L., Mei, H., and Yu, J.
X.: Matching dependence-related queries in the system
dependence graph In ASE, 457–466, 2010.

[16] Navarro, G. A guided tour to approximate string matching,
ACM Computing Surveys, 33(1), 31–88, 2001.

[17] Kim, H., Jung, Y., Kim, S., and Yi, K. MeCC: memory
comparison-based clone detector, In ICSE, 301-310, 2011.

[18] Dang, Y., Song, G., Huang, R., and Zhang, D. Code Clone
Detection Experience at Microsoft, Proceedings of
International Workshop on Software Clones, 63–64, 2011.

[19] Menzies, T., Greenwald, J., and Frank, A. Data Mining Static
Code Attributes to Learn Defect Predictors, TSE, 33(1), 2–13,
2007.

[20] Emam, K., Benlarbib, S., Goelb, N., Raic, S. N. Comparing
case-based reasoning classifiers for predicting high risk
software components, JSS, 55(3), 301–320, 2001.

[21] Kim, S., Zhang, H., Wu, R., and Gong, L. Dealing with noise
in defect prediction, In ICSE, 481–490, 2011.

[22] Jiang, L., Su, Z., Chiu, E. Context-based detection of
clone-related bugs, In FSE, 55–64, 2007.

[23] Roy, C. and Cordy, J. An Empirical Study of Function
Clones in Open Source Software, In WCRE, 81–90, 2008.

[24] Kapser, C. and Godfrey M. "Cloning considered harmful"
considered harmful: patterns of cloning in software Empirical
Software Engineering, 13(6), 645–692, 2008.

[25] Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B.,
Schaetz, B., Wagner, S., Domann, C., Streit, J.: Can Clone
Detection Support Quality Assessments of Requirements
Specifications? In ICSE, 79–88, 2010.

[26] Cohen, J.: Weighted kappa: Nominal scale agreement with
provision for scaled disagreement or partial credit
Psychological Bulletin, 70 (4), 213–220, 1968.

