
Locating Need-to-Translate Constant Strings for Software Internationalization

Xiaoyin Wang1,2, Lu Zhang1,2∗, Tao Xie3∗, Hong Mei1,2, Jiasu Sun1,2

1Institute of Software, School of Electronics Engineering and Computer Science
2Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

Peking University, Beijing, 100871, China
{wangxy06, zhanglu, meih, sjs}@sei.pku.edu.cn

3Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
xie@csc.ncsu.edu

Abstract

Modern software applications require internationaliza-
tion to be distributed to different regions of the world. In
various situations, many software applications are not in-
ternationalized at early stages of development. To interna-
tionalize such an existing application, developers need to
externalize some hard-coded constant strings to resource
files, so that translators can easily translate the applica-
tion into a local language without modifying its source
code. Since not all the constant strings require external-
ization, locating those need-to-translate constant strings is
a necessary task that developers must complete for inter-
nationalization. In this paper, we present an approach to
automatically locating need-to-translate constant strings.
Our approach first collects a list of API methods related
to the Graphical User Interface (GUI), and then searches
for need-to-translate strings from the invocations of these
API methods based on string-taint analysis. We evaluated
our approach on four real-world open source applications:
RText, Risk, ArtOfIllusion, and Megamek. The results show
that our approach effectively locates most of the need-to-
translate constant strings in all the four applications.

1 Introduction
1.1 The Problem
Modern software applications often need to be dis-

tributed to different regions of the world. To be better used
by users in a certain region, a software application should
have a local version for local users. Typically, a local ver-
sion’s user-visible texts should be in the local language, and
its numbers, times and dates should also be in the local for-
mats. In general, techniques for obtaining and managing
these local versions are usually referred to as software in-
ternationalization.

∗Corresponding author

Developers of some software applications consider in-
ternationalization in the beginning of development. That is
to say, developers of these applications try to avoid hard-
coding elements that need to be changed from one local
version to another. However, in many cases, developers
need to apply software internationalization on existing code
with the following reasons. First, many popular software
applications are originated from open source prototypes or
research prototypes, whose developers do not expect their
users to have requirements specific to particular regions in
the beginning. Second, developers of an international soft-
ware application may reuse some non-international soft-
ware components. Thus, the developers may have to inter-
nationalize these reused components. In all these cases, de-
velopers need to internationalize existing code, which typ-
ically contains many hard-coded elements specific to one
local version.
When internationalizing existing code, developers usu-

ally need to locate those hard-coded elements that need
translation [5, 13]. The need-to-translate elements include
constant strings, time/date objects, number-format objects,
culture-related objects, etc. In particular, locating need-to-
translate constant strings is often the most tedious task. The
reason is that, a software application typically contains a
large number of constant strings, many but not all of which
need translation.
1.2 Existing Support
There exist tools (e.g., GNU gettext1, Java interna-

tionalization API2) to help developers externalize need-to-
translate constant strings after the developers locate them.
Other tools such as KBabel3 help developers edit and man-
age resource files (called PO files in KBabel) containing

1http://www.gnu.org/software/gettext/manual/
gettext.html

2http://java.sun.com/docs/books/tutorial/i18n/
index.html

3http://kbabel.kde.org/

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

externalized constant strings. Some development environ-
ments (e.g., Eclipse) provide help to locate and externalize
all constant strings in the code of an application. However,
not all of the constant strings need translation. Our empiri-
cal results in Section 5 show that in real-world software ap-
plications, less than half of the constant strings need trans-
lation. Thus, it may be a waste of time for translators to
translate all the constant strings. To be even worse, transla-
tion of some constant strings may introduce bugs. For ex-
ample, if the name of a field in an SQL query for a database
is translated into another language, the software application
may suffer from runtime failures when retrieving data from
the database.
1.3 Our Approach
In this paper, we present an automatic approach to locat-

ing need-to-translate constant strings in source code based
on string-taint analysis. The basic idea of our approach is to
locate invocations of API methods that may output strings
to the application Graphical User Interface (GUI), and trace
from the output strings to the constant strings that need
translation. In particular, our tracing approach includes four
techniques.
• The first technique adapts string-taint analysis [14] to
trace from the output strings to their sources. Sources
that are constant strings should be translated.

• The second technique deals with an application involv-
ing network communication where a source of an output
string may be a string variable whose value is transmitted
across the network. There we further analyze string trans-
mission across the network to locate hard-coded constant
strings in one side of the network but may appear on the
GUI of the other side of the network.

• The third technique deals with complications where the
translation of some to-be-translated constant strings also
impacts strings that are compared with these to-be-
translated constant strings. There we analyze string com-
parisons in the code to locate constant strings that string
translation impacts.

• Since not all constant strings that are viewable on the GUI
need translation, the last technique filters out strings that
are not likely to be translated.

This paper makes the following main contributions:
• An approach to automatically locating need-to-translate
constant strings in source code based on tracing from in-
vocations of API methods that output strings to the GUI.

• Adaptation of string-taint analysis and three other practi-
cal techniques to further cope with issues of string trans-
mission, string comparison, and filtering.

• An empirical study of applying our approach on four real-
world open source applications to demonstrate the effec-
tiveness of our approach. The empirical results show that

our approach not only locates most of the strings that the
developers externalized, but also finds some strings that
the developers missed. We reported in a bug report 17
missed strings that are still missing in the latest version
of the Megamek application4. All of the 17 strings were
confirmed and later translated by Megamek developers.

We organize the rest of this paper as follows. Section 2
presents an example of locating need-to-translate constant
strings. Section 3 presents our approach in detail. Section 4
presents the implementation of our approach. Section 5 re-
ports an empirical study of our approach. Section 6 further
discusses related issues. Section 7 discusses related work
and Section 8 concludes with future work.

2 Example
We next present an example to illustrate a situation

that a developer may face when manually locating need-
to-translate constant strings in source code. The exam-
ple comes from Risk5 (Version 1.0.7.5), a real-world open
source project used in our empirical study. Consider the
following code portion in Risk:
1 public class Risk{
2 private RiskController gui;
3 private String message;
4 private RiskGame game;
5 public void GameParser(String mem){
6 message=mem;
7 StringTokenizer StringT = new StringTokenizer(message," ");
8 String addr = StringT.GetNext();

...
9 if(addr.equals("CARD")){
10 if(StringT.hasMoreTokens()){
11 String name = StringT.GetNext();
12 String cardName;

...
13 if(name.equals("wildcard"))
14 cardName = name;
15 else cardName = card.getName() + " " + name;
16 gui.sendMessage("You got a new card:\""
17 + cardName + "\"", false , false);

}
...} }

18 public void DoEndGo(String mem){
...

19 GameParser("CARD "+game.getDeservedCard());
...}

}
20 public class RiskGame{
21 public String getDesrvedCard(){
22 Card c = cards.elementAt(r.nextInt(cards.size()));
23 if(c.getCountry() == null)
24 return "wildcard";
25 else
26 return c.getCountry.getName();

...}}

In the preceding code portion, Lines 16-17 include an
invocation of RiskController.sendMessage(...),
and the expression "You got a new card:\"" +
cardName +"\"" corresponds to parameter output in
RiskController.sendMessage(...), which sends the
value of output to the GUI. Now the developer knows that

4http://sourceforge.net/projects/megamek/
5On Sept. 2, 2008, we found that the name of Risk was changed to

Sametime Risk recently.

2

"You got a new card:" needs translation. Further-
more, the value of variable cardName also appears on the
GUI. So the developer needs to further trace to the sources
of cardName. Line 14 indicates that name is a source of the
value of cardName. Furthermore, the value of name comes
from a token of StringTokenizer StringT as shown in
Line 11. In Lines 6-7, the content of StringT comes from
parameter mem of Risk. GameParser(String), and the
tokenizer splits mem into two parts. The first part is used
for the branch condition in Line 9, while the second part is
passed to variable name and output to the GUI. Only the
second part needs translation.
Then the developer finds an invocation of

Risk.GameParser(String) in Line 19, which passes the
actual argument "CARD "+game.getDeservedCard() to
the method. Furthermore, the developer needs to look into
the implementation of RiskGame.getDeservedCard()
and finds that it returns two possible values: "wildcard"
and c.getCountry.getName(). A possible value of the
latter is actually a country name from a data file, and the
related code is not shown for simplicity. Thus, two possible
values of the actual argument in Line 19 and the parameter
in Line 5 can be "CARD wildcard" and "CARD XXXX",
where "XXXX" is a country name from the data file.
From the preceding analysis, the developer can know

that the first part of StringTokenizer StringT is "CARD"
and the second part is either "wildcard" or "XXXX".
Therefore, the constant string "CARD" in Line 19 is used for
only the branch condition and does not require translation,
while the constant string "wildcard" in Line 24 is output
and requires translation. Furthermore, the developer can
know that "CARD" in Line 9 does not require translation,
because "CARD" in Line 9 is compared to only the first part
of StringT. However, "wildcard" in Line 13 requires
translation, because "wildcard" in Line 13 is compared
to the second part of StringT and the second part requires
translation because it is passed to the GUI.
From this example, we can see that a developer needs

to perform a tedious and error-prone analysis to determine
which string requires translation and which string does not,
and the developer needs to be experienced enough to do
so. In particular, it is also necessary to analyze contents of
string variables and comparisons of strings. Such analysis
helps determine that constant strings "wildcard" in Lines
13 and 24 require translation while constant strings "CARD"
in Lines 9 and 19 do not.

3 Approach
Our approach consists of three main steps. The first step

is to maintain a list of API methods that output strings to
the GUI. This step is a preparation step before we begin
to locate need-to-translate strings in software applications
that have not been internationalized. We refer to these API

methods as the output API methods. The second step is to
search in the application for invocations of the output API
methods and determine the actual arguments that are out-
put to the GUI. We refer to these actual arguments as the
initial output strings. The third step is to trace from the ini-
tial output strings to other places that may contain need-to-
translate constant strings. This step includes four practical
techniques: string-taint analysis, string-transmission analy-
sis, string-comparison analysis, and filtering.

3.1 Collecting Output API Methods

To represent an API method in the list of output API
methods, we use the signature of a method with full package
and class names, because method names may be overloaded
and classes in different packages may have the same name.
Furthermore, for each output API method, we also specify
which parameters of the method are output to the GUI and
denote them as output parameters.
Note that, in API libraries of a programming lan-

guage such as Java, there are typically a small num-
ber of classes (or modules) containing output API meth-
ods. For example, in API libraries for Java, packages
java.awt.* and javax.swing.* are the main sources of
output API methods for general Java programs, and pack-
age org.eclipse.swt.* is the main source of output API
methods for Java programs running on Eclipse. That is to
say, output API methods often involve only a small subset
of all the API methods, and thus can be collected manually
with reasonable effort.

3.2 Locating Initial Output Strings

For each output API method, we search for all possible
invocations of the method in the software application and
record locations of the invocations. Due to polymorphism,
such an invocation may not appear as an invocation of an
output API method syntactically. We consider all the invo-
cations that may be bound to an output API method. Note
that searching for possible invocations of a given method
under polymorphism is a mature technique and has been
implemented in IDEs such as Eclipse.
After we locate all the possible invocations of output API

methods, we trace to the actual arguments corresponding to
the output parameters of the output API methods. These
actual arguments are the initial output strings.

3.3 String-Taint Analysis

From each initial output string, we perform an adapted
string-taint analysis to locate the possible sources of the ini-
tial output string in the code. Among the located sources,
hard-coded constant strings and strings transmitted across
the network are of particular interest to us.
String-taint analysis is a technique recently proposed by

Wassermann and Su [14] based on string analysis [1, 11]
whose purpose is to predict the possible values of a certain

3

string variable in the code. Wassermann and Su adapted
string analysis to further analyze whether some substrings
in the string variable might come from insecure sources.
With source code, a string variable, and insecure locations
as input, string-taint analysis predicts the given string vari-
able’s possible values and determines whether the possible
values might contain insecure substrings (i.e., those from
insecure sources).
The general idea of string analysis is as follows. First,

the program is changed to the static single assignment
(SSA) [3] form. Second, string assignments and concatena-
tions that the string variable under analysis depends on are
abstracted as an extended context free grammar (CFG) with
string operations (i.e., library methods managing strings
such as String.subString(int,int) in Java) on the
right-hand side. Then these string operations are simulated
with finite-state transducers (FSTs) [11]. Finally, the lan-
guage of the extended CFG includes all the possible val-
ues of the string variable under analysis. String-taint analy-
sis adapts string analysis by adding annotations to the sub-
strings that are involved in string analysis and propagat-
ing these annotations during the process of string analysis.
Thus, if strings from insecure sources are properly anno-
tated, examining for their annotations can help determine
whether the possible values of the string variable contain
insecure substrings.
To apply string-taint analysis for our problem, we need

to do some adaptation. As we are interested in hard-coded
constant strings, we use the locations of these strings as
their annotations. For strings from other sources such as
files and network, we further annotated them as “&FileIn-
put” and “transmitted”, etc.
To illustrate this process, we next describe how our ap-

proach analyzes the code in Section 2. First, we compile
and transformed the code to the SSA form as below.
if(c.getCountry==null){

return1 = "wildcard";
}else{

return2 = &FileInput;
}
return3 = φ(return1, return2);
parseCard = "CARD"+return3;
message = φ(parseCard,{other actual arguments});
StringT = new StringTokenizer(message, " ");
addr = StringT.getNext();
if(addr.equals("CARD")){

name = StringT.getNext();
output = You got a new card: +name;

}
Then, we transform the SSA form to the extended CFG

as below. In the transformation, we add the exact lo-
cation of each constant string as the annotation to the
constant string. For example, for string wildcard, we
add “RiskGame.java:6767” ("wildcard" starts from the
6767th character in RiskGame.java) as its annotation, we
do not show annotations in the following grammar for brief-
ness.
return1 → wildcard
return2 → &FileInput
return3 → return1|return2
parseCard → CARD return3

Figure 1: FSTs for StringTokenizer.getNext()(where
A denotes Σ*/delim)

message → parseCard|...
StringT → message
addr → nextToken(stringT, " ")
StringT1 → reduceToken(StringT, " ")
name → nextToken(stringT1, " ")
StringT2 → reduceToken(StringT1," ")
output → You got a new card: name

In the SSA code, there are two types of
string operations of StringTokenizer: the con-
structor StringTokenizer() and getNext().
StringTokenizer is a string-manipulating class in
Java and is initialized with a string and a delimiter (denoted
as delim), and the string is divided into segments with the
delim as the separator. Then we can obtain the segments
using the method getNext(). In the grammar, the
constructor StringTokenizer() is treated as an ordinary
string assignment, and getNext() is replaced by two con-
tinuous operations: nextToken() and reduceToken().
In the two operations, nextToken() returns the value of
the first token while reduceToken() returns the remain-
ing string after cutting the first token off the head. The
two operations are simulated by two finite state transducers
(FSTs)6 shown in Figure 1. We deduce from output
in the last line of the extended CFG and obtain possible
results7: You got a new card: wildcard and You
got a new card:&FileInput. From the annotations of
the two constant strings "You got a new card:" and
"wildcard", we obtain the locations of these two constant
strings and marked them as need-to-translate.

3.4 String-Transmission Analysis

Using string-taint analysis in Section 3.3, we are able to
trace to string variables whose values are transmitted across
the network. We next present our technique to further trace
the transmitted strings. A straightforward idea for tracing
a transmitted string on one side of an application over the
network is to locate the corresponding string variable on the

6In Figure 1, the character before “/” is the input to the FST and the
character after “/” is the output from the FST.

7We do not deduce strings with infinite length, so when our deduction
meets the same non-terminal for the second time, we ignore it.

4

other side of the application, and use string-taint analysis to
trace the corresponding string variable on the other side.
However, string variables holding transmitted strings are

typically also used to hold strings that do not appear on the
GUI. Let us consider a piece of code that implements data
transmission between a client and a server. The transmitted
data are encapsulated in a class defined as below.
1 class Packet {
2 int command;
3 String data;
4 public Packet(int command, String data)
5 {this.command=command; this.data=data;}
6 public int getCommand()
7 {return command;}
8 public String getData()
9 {return data;}}

On the server side, the following code portion is used to
send two different objects of Packet to the client side.
10 Packet packet = new packet(Packet.ENDOFGAME,
11 "Automatic Shuts Down")

...
12 Packet packet = new packet(Packet.CHAT,
13 "Game saved to"+sFilename);
14 ObjectOutputStream out = new
15 ObjectOutputStream(socket.getOutputStream());
16 out.writeObject(packet);

On the client side, the following code portion is used to
receive objects of Packet transmitted from the server side.
17 ObjectInputStream in =
18 new ObjectInputStream(socket.getInputStream());
19 Packet packet = (Packet)in.readObject();
20 switch(packet.getCommand()){
21 case Packet.CLOSECONNECTION:
22 disconnected(); break;

...
23 case Packet.CHAT:
24 Output(packet.getData()); break;

...
25 case Packet.ENDOFGAME:
26 saveEntityStatus(packet.getData());break;}

From the preceding code portions, we know that the
client side may receive different objects of Packet. How-
ever, only when the value of command in Packet is
Packet.CHAT, the value of data in Packet is output to
the GUI on the client side. In the preceding code por-
tions, "Game saved to" (Line 13), which is sent with
Packet.CHAT, is passed to the GUI and thus needs trans-
lation while "Automatic Shuts Down" (Line 11), which
is sent with Packet.ENDOFGAME, does not need transla-
tion. Thus, if we continue to trace data in Packet on the
server side using string-taint analysis, we may trace to some
constant strings that are assigned to data in Packet when
the value of command in Packet is not Packet.CHAT. The
reason is that string-taint analysis does not analyze different
values of command in Packet.
In fact, the preceding way of data transmission repre-

sents a typical mechanism used in object-oriented software
for data transmission. First, data for transmission is imple-
mented as objects for transmission. Second, in the class
definition of objects for transmission, there is a member
variable (i.e., command in the preceding code) serving as

the label variable of the data for transmission. In addition,
there is another one or more member variables (i.e., data
in the preceding code) holding the data for transmission. If
there are strings for transmission, one or more such mem-
ber variables are defined as strings. Third, after receiving
a transmitted object, the receiver needs to check the value
of the label variable before using the data, as the receiver
needs to interpret the meaning of the data according to the
value of the label variable.
To make more precise analysis of transmitted strings, we

adopt the following strategy. First, in the class that de-
fines objects for transmission, we determine the member
variable serving as the label variable through analyzing the
receiver’s code. The distinct characteristic of such a mem-
ber variable is that after receiving an object, the receiver
should check this member variable before using the data
in the received object. Second, if the received object con-
tains a member variable as a string, for each different value
of the label variable in the object, we view the string as a
different source of a transmitted string. For example, the
two occurrences of packet.getData() in Lines 24 and
26 are viewed as different sources. Third, after we trace
to a string in a received object in the receiver’s code, we
further analyze the instantiation of the object for transmis-
sion in the sender’s code. If the label value of the instanti-
ated object matches the label value of the transmitted object
in the receiver’s code, we further trace the sources of the
corresponding string in the sender’s code using our adapted
string-taint analysis. If the label value does not match, no
string-taint analysis is performed on the sender’s code.
3.5 String-Comparison Analysis
In Sections 3.3 and 3.4, our aim is to trace constant

strings that may be viewable on the GUI. However, not only
strings viewable on the GUI require translation in software
internationalization. In the example presented in Section 2,
"wildcard" in Line 24, which is a source of name, needs
translation. Since the constant string "wildcard" in Line
13 is compared to name, "wildcard" also needs transla-
tion. Therefore, after we locate constant strings viewable
on the GUI, we need to further locate the strings that are
compared with these viewable strings.
To address this issue, we first locate all the compar-

isons between strings in the source code. In particular,
we locate comparisons between strings through identify-
ing invocations of string-comparison methods provided by
the supporting libraries (e.g., String.endWith() in Java,
strcmp() in C). Then for each side of each comparison,
we perform our adapted string-taint analysis to locate all the
constant strings that are the sources of the side. If any con-
stant string located as a source for one side is in the set of
viewable strings located with the techniques in Sections 3.3
and 3.4, we include all the constant strings located as
sources for the other side as need-to-translate strings. We it-

5

eratively perform the preceding string-comparison analysis
until we cannot locate any more need-to-translate strings.
3.6 Filtering
As a practical matter, not all the strings located with the

techniques described in Sections 3.3, 3.4, and 3.5 require
translation. Some strings should remain the same in most
or even all local languages (e.g., strings composed of ara-
bic numerals), while some other strings may be intention-
ally reserved as untranslated (e.g., trademarks). Therefore,
as the final technique of our approach, we further filter out
some located constant strings that may not need translation.
Currently, we use two simple heuristics. First, we filter out
any constant string that does not include any letter charac-
ter. Second, we filter out any constant string that is equal
(ignoring the case) to the name of the project. For example,
we filter out the constant string "\"" in Line 17 in the code
portion in Section 2 according to the first heuristic.

4 Implementation
We implemented an Eclipse plug-in called TranStrL

(need-to-Translate String Locator) for our approach. In
TranStrL, we chose Java as the target language because Java
is a widely used programming language in open source ap-
plications. For a Java application, TranStrL presents all the
located need-to-translate constant strings, the source files
that contain these strings, and the exact locations of these
strings in the source files. We first used the front-end of the
JSA tool (a Java string analyzer) [1] to obtain the extended
context free grammar (CFG) with string operations; then we
built FSTs [11] to simulate string operations in Java; and
finally we added annotations before deducing with the ex-
tended CFG. In TranStrL, we collected output API methods
from two packages: java.awt.* and javax.swing.*.
So TranStrL currently supports Java applications using only
these two packages to implement their GUI.

5 Empirical Study
5.1 Study Setup
In our empirical study, we used four real-world open

source applications as subjects: RText, Risk, ArtOfIllu-
sion (AOI) and Megamek. All the four applications are
accessible from the web site of sourceforge8. RText is a
programmer-oriented text editor started since Nov. 2003.
Risk is a board game started since May 2004. AOI is a
graph editor started since Nov. 2000. Megamek is a real-
time strategy game started since Feb. 2002. We chose these
four applications with two main reasons. First, all the four
applications are among the highest ranked programs that
meet the requirement of our study (i.e., having versions be-
fore and after internationalization, and having GUIs built
on java.awt.* and javax.swing.*). Second, the four

8www.sourceforge.net, accessed on June 20, 2008

applications represent software in different categories and
their GUI structures are different. Both RText and AOI have
typical component-based GUIs (i.e., GUIs built with but-
tons, dialogs, menus, etc.). As AOI is a graph editor, it in-
cludes more operations on canvas and graphs. By contrast,
Risk and Megamek are two different games with more styl-
ized and complex GUIs. We chose two games as subjects
because the GUIs of games are typically more complex than
other types of applications and it would be interesting to see
how our approach performs on this type of applications.
The developers of all these four subjects did not consider

internationalization at the beginning, and they used many
hard-coded constant strings in English in early versions of
theses subjects. In Summer 2004, the developers of RText
internationalized RText and updated the application from
Version 0.8.6.9 to Version 0.8.7.0. During this time of inter-
nationalization, they internationalized only the core pack-
age of the application (i.e., package org.fife.rtext).
The primary aim of the internationalization was to create
a version for Spanish users. In Winter 2004, the developers
of Risk internationalized Risk and updated the application
from Version 1.0.7.5 to Version 1.0.7.6. In Summer 2002,
AOI was internationalized and updated from Version 1.1 to
Version 1.2. In Spring 2005, the developers of Megamek
began to internationalize Megamek and finished the first in-
ternationalized version (i.e., Version 0.29.73).
For all the four subjects, the developers externalized

some hard-coded constant strings to resource files and trans-
lated the externalized constant strings to the target lan-
guages during internationalization.
To evaluate how useful our approach is for real-world

internationalization tasks, for each subject, we applied
TranStrL to the version before internationalization and
compared the results achieved by TranStrL with the actual
changes for internationalization made by the developers.
Before we report the empirical results, we present the statis-
tics of the subjects in Table 1. For each subject, Columns
1-6 show the name and version number of the application,
the starting month of the application, the number of devel-
opers involved in the development of the application9, the
number of lines of code (LOC) of the application, the num-
ber of files of the application, and the number of constant
strings of the application, respectively10.
Column 7 shows the number of the need-to-translate

constant strings, which serve as the golden solution in
our empirical study. We obtained our golden solution as
follows. First, we deemed constant strings in the ver-
sion before internationalization as need-to-translate con-
stant strings, if the developers externalized them in the

9Sourceforge counts all the persons who contributed to a project as
developers, so it is no wonder that there are 16 developers for RText.
10The statistics for Ver 0.8.6.9 of RText are only for package org.

fife.rtext, as the developers internationalized only this package.

6

subsequent internationalized version. Second, since our
approach did find a number of need-to-translate constant
strings that were not externalized in the subsequent inter-
nationalized version for each subject, we also deemed as
need-to-translate constant strings the constant strings that
were located by TranStrL and manually verified by us to
need translation.
In particular, when TranStrL located a constant string not

externalized in the subsequent internationalized version, we
further checked versions later than the subsequent interna-
tionalized version. If the constant string was externalized
in a later version, we also deemed it as need-to-translate. If
not, we used some manually generated input data to execute
the subsequent internationalized version. If the string was
viewable on the GUI and not understandable to a user not
familiar with English, we deemed it as need-to-translate;
otherwise, we deemed it as not needing translation. In
principle, we adopted a conservative policy to avoid mis-
classifying strings that do not need translation as need-to-
translate. That is to say, we tried to avoid biasing our eval-
uation favorably to our approach.

5.2 Empirical Results

5.2.1 Overall Results and Analysis

Results. We present the results of applying TranStrL to
the four subjects in Table 2. In this table, we refer to strings
that need translation but are not located by our approach as
false negatives, and strings that are located by our approach
but actually do not need translation as false positives. From
the table, we have the following observations.
First, our approach (using all the tracing techniques)

is able to locate most of the need-to-translate strings. In
RText, our approach locates all the need-to-translate strings,
while in Risk, AOI, and Megamek, our approach locates
491 of 509, 1215 of 1221, and 1724 of 1734 need-to-
translate strings, respectively. That is to say, the false nega-
tives of our approach for all the four subjects are quite small.
Second, for each subject, our approach does find a few

false positives. In RText, Risk, AOI, and Megamek, the
numbers of strings that are located by our approach but
do not need translation are 37, 7, 65, and 41, respectively.
Compared to the numbers of need-to-translate strings in the
four subjects, the numbers of false positives are also quite
small.
Third, for each subject, our approach is able to locate

some constant strings that the developers did not externalize
in the subsequent internationalized version but were verified
by us as need-to-translate. The developers might have either
missed them or did not externalize them at that time due to
time or workload limit. In both cases, locating such strings
should be helpful for the developers to produce a version
with better quality of internationalization earlier.
In total, our approach locates 1670 such strings in the

four subjects. Among the 1670 strings, 1422 (87 in RText,
10 in Risk, 746 in AOI, and 579 in Megamek) were ex-
ternalized and translated in a later version and 248 still re-
mained hard-coded in all the later versions or were removed
due to modifications other than internationalization. We
next present two examples of the two preceding situations.
The first example is from RText. In the subsequent in-

ternationalized version (i.e., 0.8.7.0), the text editor shows
the position of the cursor at the lower right corner of the
panel in the form of "Line xx, Col. xx". However,
constant strings "Line" and "Col." are not externalized.
The developers of RText externalized and translated the two
strings 11 months later in Version 0.9.1.0.
The second example is from Megamek as shown in the

following piece of code.
public MechView(Entity entity) {

...
StringBuffer sBasic;
sBasic.append(Messages.getString("MechView.Movement"))
...
sBasic.append(entity.getMovementTypeAsString())}

public String getMovementTypeAsString(){
switch (getMovementType()) {

...
case Entity.MovementType.TRACKED:

return "Tracked";
case Entity.MovementType.WHEELED:

return "Wheeled";
...}}

Variable sBasic in the method Mechview() (in
megamek.client.Mechview.java) is finally passed to
the GUI as the description of weapons in the game. There-
fore, the developers externalized the first part of sBasic as
Messages.getString("MechView.Movement"), and
added an item "Mechview.Movement" in the resource file
(i.e., "Movement:" for English and "Bewegung:" for Ger-
man). But even in the latest version they did not external-
ize the second part, which is a return value from method
getMovementTypeAsString(). Therefore, a strange
string with its first part translated to German but second
part remaining in English appears on the GUI of the Ger-
man version of the game. We have reported all 17 untrans-
lated need-to-translate strings located by TranStrL to the
Megamek developers as bug report #2085049 and all these
17 strings were confirmed and fixed by the developers. We
next further discuss the reasons for the false negatives (i.e.,
need-to-translate strings not located) and the false positives
(i.e., located need-to-translate strings that actually do not
need translation).
Analysis of false negatives. Generally, the false nega-

tives fall into three categories. The first category is constant
strings that are compared to string variables whose values
come from viewable items in widgets (such as an AWT Ta-
ble item or an AWT List item) on the GUI. If the developers
translate constant strings whose value appears in a widget
on the GUI, the translation may impact string variables that
are compared to these translated strings. This category in-
cludes all the 6 false negatives from AOI, all the 10 false

7

Table 1: Basic information of the subjects
Application Starting #Developers #LOC #Files #Constant #Need-to-Trans(Not externalized
/Version Month Strings in the subsequent version)

Rtext 0.8.6.9(Core Package) 11/2003 16 17k 55 1252 408(121)
Risk 1.0.7.5 05/2004 4 19k 38 1510 509(55)
AOI 1.1 11/2000 2 71k 258 2889 1221(816)

Megamek 0.29.72 02/2002 33 110k 338 10464 1734(678)
Table 2: Results of applying our tool on the four applications

Application Need-to-Trans(Not externalized in the subsequent ver) Located False Neg (FN) False Pos (FP)
RText 408(121) 445 0 37
Risk 509(55) 498 18 7
AOI 1221(816) 1280 6 65

Megamek 1734(678) 1765 10 41

negatives from Megamek, and 3 of the 18 false negatives
from Risk. In principle, string-comparison analysis should
be able to locate strings in this category. The reason that
our tool failed to do so in our empirical study is as fol-
lows. This category involves some string assignments or
even string comparisons implemented in library code. Our
tool cannot trace into library code whose source code is
not available, but if we can extend string-taint analysis and
string-comparison analysis to library code, we can address
this category of false negatives.
The second category is constant strings related to the

names of language-related file folders (e.g., maps and
cards). 10 of the 18 false negatives in Risk belong to this
category. Let us take map folders as an example. Since Risk
is a game application, various maps are used. As maps may
contain texts specific to particular languages, versions for
different languages may require different sets of maps. To
internationalize maps, the developers used different folders
to store maps for different languages. Thus, when switch-
ing from one language to another, the names of map folders
should also be switched.
The third category is debugging messages viewable on

the console but not output through output API methods. In
Risk, 5 of the 18 false negatives belong to this category.
Note that developers may choose to or not to international-
ize debugging messages. For RText, our approach located 2
debugging messages (which are output through API meth-
ods), but the developers did not externalize them and we
counted them as false positives. However, developers of
Risk externalized 5 debugging messages, which we counted
as 5 false negatives.
Analysis of false positives. Generally, the false positives

fall into four categories. The first category of false positives
consists of strings that are viewable on the GUI but may
be intentionally left as not translated. Such strings include
version information, copyright information, acronyms, etc.
Since we used a conservative policy when verifying strings
that are located by our approach but not externalized by the
developers, we counted these strings as false positives. In

total, 18 of 37 false positives in RText, 3 of the 7 false pos-
itives in Risk, 4 of 65 false positives in AOI, and 6 of 41
false positives in Megamek belong to this category.
The second category of false positives consists of strings

that are viewable on the GUI but cannot be translated. For
example, file-extension or directory names (such as “*.txt”
or “C:/abc”) appear in dialogs related to file selection, but
these names should be the same for different languages. An-
other example is the names of fonts (e.g., Times New Ro-
man). These names may also appear on the GUI, but should
remain the same for different languages. Furthermore,
string-comparison analysis introduces more false positives
if strings are compared with false positives in this category.
In total, 14 of 37 false positives in RText, 4 of 7 false posi-
tives in Risk, 61 of 65 false positives in AOI, and 35 of 41
false positives in Megamek belong to this category.
The third category includes 3 of 37 false positives in

RText. These strings are HTML tags. They are passed to
some texts in the HTML format and these texts are then
passed to a window that displays HTML files. That is to say,
the texts are for display on the GUI, but translating these
HTML tags may result in improper display.
The fourth category is those used for debugging. This

category includes 2 false positives in RText. That is to say,
these 2 strings can appear in windows for displaying debug-
ging information. As the developers may not be familiar
with multiple languages, translating these strings may im-
pact the debugging process negatively.
Summary. For all the four subjects, our approach is able

to locate most of the need-to-translate strings while produc-
ing only small numbers of false negatives and false posi-
tives. Among the false negatives, the first category may re-
sult in run time errors but can be addressed by extending the
analysis to analyze library code. The second category can
be easily detected by analyzing the file system. The third
category is relatively trivial for users to detect. Among the
false positives, the first category actually can be removed by
translators who know about the customs of local users. The
second and the third categories of false positives may result

8

Table 3: Turning on and off string-transmission analysis
Application Need-to Located FN FP

-trans
Megamek 1734 1765 10 41

Megamek(NT) 1734 1188 585 39
Megamek(ALL) 1734 1777 10 53

in run time errors, but can be detected by heuristic-based
checkers. The fourth category is also trivial for users to de-
tect. Furthermore, for each subject, our approach is able to
locate some need-to-translate strings that the developers did
not locate when internationalizing the subject.
The preceding results show that our approach is useful

in at least the following two scenarios. First, developers
can use our approach to generate candidates for translation,
since our approach achieves acceptable results for develop-
ers to start internationalization. Second, since our approach
can find some strings that developers cannot easily find by
themselves, they can use our approach to check internation-
alized versions and find missed need-to-translate strings.
5.2.2 Effects of Different Techniques
In our approach, the basic tracing technique is string-

taint analysis, and we also develop three other techniques
(i.e., string-transmission analysis, string-comparison analy-
sis, and filtering) to cope with practical complications. To
evaluate the effects of the three techniques in our approach,
we performed a series of evaluations. The baseline was to
use all of the three techniques with string-taint analysis, and
we turned off each technique at a time to see how the spe-
cific technique affects the results.
Effects of string-transmission analysis. We show the

results of turning on and off string-transmission analysis
in Table 3. Since only Megamek transmits strings across
the network, turning on or off string-transmission analysis
affects the result of only this subject. We considered two
ways of turning off string-transmission analysis. In the first
way, we did not analyze string variables whose values are
transmitted across the network. In the second way, we used
string-taint analysis to analyze all string variables whose
values are transmitted across the network without consid-
ering the label variable in transmitted objects.
In Table 3, the line marked with “(NT)” presents the re-

sults of our approach with turning off string-transmission
analysis in the first way, while the line marked with
“(ALL)” presents the results of our approach with turning
off string-transmission analysis in the second way.
From the table, we observe that, compared to the first

way of turning off string-transmission analysis, string-
transmission analysis helps find 575 more need-to-translate
strings (or reduce 575 false negatives) in Megamek, intro-
ducing 2 false positives (falling into the second category
of false positives discussed in Section 5.2.1). Compared to
the second way of turning off string-transmission analysis,
string-transmission analysis helps reduce 12 false positives.

Table 4: Turning on and off string-comparison analysis
Application Need-to Located FN FP

-trans
RText 408 445 0 37

RText(NC) 408 445 0 37
Risk 509 498 18 7

Risk(NC) 509 474 42 7
AOI 1221 1280 6 65

AOI(NC) 1221 1280 6 65
Megamek 1734 1765 10 41

Megamek(NC) 1734 1730 36 32
Table 5: Turning off the string filter

Application Need-to Located FN FP
-trans

RText 408 445 0 37
RText(NF) 408 581 0 173
Risk 509 498 18 7

Risk(NF) 509 532 18 41
AOI 1221 1280 6 65

AOI(NF) 1221 1487 6 272
Megamek 1734 1765 10 41

Megamek(NF) 1734 2080 10 356

Effects of string-comparison analysis. We show the
results of turning on and off string-comparison analysis in
Table 4, in which the lines marked with “(NC)” present the
results of turning off string-comparison analysis.
First, string-comparison analysis is helpful to find more

need-to-translate strings (or reduce false negatives) in two
of four subjects (i.e., 24 in Risk and 26 in Megamek). Sec-
ond, string-comparison analysis brings in 9 false positives
in Megamek. Specifically, these 9 false positives belong to
the second category of false positives. That is to say, string-
comparison analysis locates these 9 strings because they are
compared directly or indirectly to some strings viewable on
the GUI but cannot be translated.
Effects of filtering. We show the results of turning on

and off filtering in Table 5, in which the lines marked with
“(NF)” present the results of turning off filtering.
From Table 5, we observe that, in each subject, filtering

can effectively reduce the number of false positives. Fur-
thermore, filtering does not cause any false negatives in all
the four subjects. The reason is that we use conservative
heuristics in filtering. Actually, if we use some aggressive
heuristics, we may further reduce the number of false pos-
itives, but the number of false negatives may increase. In
fact, we tried some aggressive heuristics as well, but in gen-
eral the aggressive heuristics did not significantly outper-
form our simple conservative heuristics.
5.3 Threats to Validity
The main threats to internal validity lie in the way we

verify constant strings not externalized in the subsequent

9

internationalized version to be need-to-translate strings for
each subject. First, it may be error-prone to verify constant
strings as need-to-translate in versions later than the subse-
quent internationalized version, because the later versions
involve various modifications for other purposes. Second,
manually verifying constant strings not externalized in any
later version as need-to-translate may be prone to acciden-
tal mistakes or personal perspectives to the notion of being
“need-to-translate”. To reduce these threats, for each sub-
ject, we examined all these strings in all later versions care-
fully, executed the internationalized subject to see whether
these strings appear on the GUI and decided whether they
are not understandable to a user not familiar with English
using a conservative policy. In fact, some of the false pos-
itives are related to this policy. The second threat to inter-
nal validity is that we did not consider the strings that were
missed by both the developers and our approach. To reduce
this threat, we chose popular software applications to carry
out our experiments, so that the quality of manual string
externalization should be high. The third threat to internal
validity is that we collected output API methods manually
and the collected list may not be complete. Although an in-
complete list is not in favor of our results, it may affect the
false positives and false negatives in our evaluation.
The main threats to external validity are as follows. First,

the results of our study may be specific to the applications
used in the evaluation. To reduce this threat, we chose ap-
plications from various domains and their GUI structures
are different from one another. Second, the four subjects
used in our empirical study are all open source applica-
tions in Java, and all of them are of moderate sizes. There-
fore, the findings of our empirical study may be specific to
open source applications in Java with moderate sizes, and
may not be generalized to other applications. Third, we
evaluated the effects of string-transmission analysis only on
Megamek, as among the four subjects only Megamek trans-
mits strings across the network. Therefore, the findings on
string-transmission analysis in our empirical study may not
be generalized to other applications. To further reduce these
threats, we plan to apply our approach to more applications,
especially those for commercial use, with larger code bases,
or having strings transmitted across the network.
6 Discussion
The basis of our approach is string-taint analysis, which

was developed based on data-flow analysis. Compared to
traditional data-flow analysis, which should also be applica-
ble to trace possible sources of the initial output strings, the
main strength of string-taint analysis lies in that it can fur-
ther analyze contents of strings through formulating string
assignments and concatenations as an extended CFG and
string operations as FSTs. As a result, string-taint analy-
sis can help reduce some false positives, such as the string
"CARD" in Line 19 of the example in Section 2.

The main weakness of string-taint analysis is that string-
taint analysis deems all the sources of each initial output
string as need-to-translate. However, when whether a par-
ticular value of an initial output string is output to the GUI
depends on values of variables of other types, string-taint
analysis may induce inaccuracy, which then may result in
some false positives. One possible way to reduce this kind
of false positives is to use dynamic analysis [2]. The main
disadvantage of using dynamic analysis for locating need-
to-translate constant strings is that dynamic analysis re-
quires a set of test data to cover possible usages of the soft-
ware application under analysis. Furthermore, according to
our experience, developers typically do not use other vari-
ables to determine whether a particular value of an initial
output string is output to the GUI. Thus, the weakness of
string-taint analysis may not result in many false positives in
practice. One exception that we know is transmitted strings.
There a label variable is used to determine which values of a
transmitted string are output to the GUI and which are not.
To deal with this situation, we developed a technique for
transmitted strings.
Our current string-transmission analysis is able to deal

with the situation of string transmission via objects through
sockets. However, there are still other ways to transmit
strings across the network. One popular way to transmit
strings is to use a remote function call such as RPC and
RMI. Our approach can address this situation with minor
adaptation by matching object names rather than socket
numbers. Other transmission strategies such as SOAP and
EventBus require more specific techniques beyond our tech-
nique, and we plan to address them in future work.
7 Related Work
To our knowledge, our work is the first reported ef-

fort directly focusing on automatically locating need-to-
translate constant strings. There have been a couple of
published books on how to internationalize a software ap-
plication [5, 13]. The books provide some guidelines on
how to find out need-to-translate constant strings and ex-
ternalize them. Some researchers analyzed the process
of internationalization and presented issues to be consid-
ered during the process, including locating need-to-translate
strings [9, 4]. However, none of them provides any auto-
matic approach to locating need-to-translate strings.
String analysis and string-taint analysis are recent ad-

vances in static data-flow analysis [10]. Christensen et
al. [1] first suggested string analysis, which is an approach
for obtaining possible values of a string variable. Gould et
al. [6] used string analysis to check the correctness of dy-
namically generated query strings. Halfond and Orso [8]
used string analysis to detect and neutralize SQL injection
attacks. Minamide [11] suggested to simulate string oper-
ations in an extended CFG with FSTs, and implemented a
string analyzer on PHP code to check contents of dynami-

10

cally generated web pages. Recently, Wassermann and Su
developed string-taint analysis [14] based on Minamide’s
work and further applied the technique on detecting cross-
site scripting [15]. In our approach, we adapted string-taint
analysis for a new problem (i.e., locating need-to-translate
constant strings), and developed techniques to cope with
practical complications in the problem.
Our approach can also be viewed as determining a sub-

set of constant strings that are related to the GUI. From this
perspective, our approach is also related to research on ab-
stract type determination, which tries to decide the semantic
role of a variable in the code. O’Callahan and Jackson [12]
proposed a technique based on static data-flow analysis to
decide the abstract type of a variable. Guo et al. [7] fur-
ther improved the approach to the same problem using dy-
namic data-flow analysis. Our approach differs from these
approaches in two main aspects. First, our approach targets
at a new problem not addressed by these approaches. Sec-
ond, our approach is based on various techniques for ana-
lyzing strings in source code while these approaches do not
focus on strings.

8 Conclusion and Future Work
In this paper, we present a novel approach to automat-

ically locating need-to-translate constant strings. Our ap-
proach is based on string-taint analysis, and proposes three
practical techniques to cope with the complications in the
targeted problem. Furthermore, we implemented our ap-
proach as an Eclipse plug-in. We evaluated our approach
on four real-world open-source applications: RText, Risk,
ArtOfIllusion (AOI), and Megamek. The empirical results
show that our approach is able to locate most of the constant
strings externalized by the developers, with small numbers
of false positives and false negatives.
In future work, we plan to extend our approach to ad-

dress the following research issues. First, we plan to extend
our tool for analyzing Java library code, because the current
inability to trace into Java library code causes some false
negatives. Second, we plan to extend our approach to sup-
port other ways of string transmission across the network.
Third, we plan to further automate the collection of the out-
put API methods in our approach. In particular, we plan
to mine the list of output API methods from existing inter-
nationalized software applications, in which we can trace
forwardly from the externalized strings to the methods that
eventually send the strings to the GUI. Fourth, there are fac-
tors other than text translation that affect the quality of soft-
ware internationalization (e.g., date/time, number formats,
different colors for emphasis in different cultures), we plan
to further address such problems. Finally, we plan to ex-
tend our approach to locate need-to-translate strings in Web
applications, in which texts viewable on Web pages are typ-
ically concatenated with non-viewable tags.

Acknowledgment
The authors from Peking University are sponsored by

the National Basic Research Program of China (973) No.
2009CB320703, the High-Tech Research and Development
Program of China (863) No. 2007AA010301 and No.
2006AA01Z156, the Science Fund for Creative Research
Groups of China No. 60821003, and the National Science
Foundation of China No. 90718016. Tao Xie’s work is sup-
ported in part by NSF grants CNS-0720641, CCF-0725190,
and Army Research Office grant W911NF-08-1-0443.

References

[1] A. Christensen, A. Mller, and M. Schwartzbach. Precise
analysis of string expressions. In Proc. SAS, pages 1–18,
2003.

[2] J. A. Clause, W. Li, and A. Orso. Dytan: a generic dynamic
taint analysis framework. In Proc. ISSTA, pages 196–206,
2007.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans. on
Prog. Lang. and Sys., 13(4):451–490, October 1991.

[4] V. Dagiene and R. Laucius. Internationalization of open
source software: framework and some issues. In Intl. Conf.
on Information Technology: Research and Education, pages
204–207, 2004.

[5] B. Esselink. A Practical Guide to Software Localization:
For Translators, Engineers and Project Managers. John
Benjamins Publishing Co, 2000.

[6] C. Gould, Z. Su, and P. T. Devanbu. Static checking of
dynamically generated queries in database applications. In
Proc. ICSE, pages 645–654, 2004.

[7] P. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dy-
namic inference of abstract types. In Proc. ISSTA, pages
255–265, 2006.

[8] W. G. J. Halfond and A. Orso. AMNESIA: analysis and
monitoring for neutralizing SQL-injection attacks. In Proc.
ASE, pages 174–183, 2005.

[9] J. Hogan, C. Ho-Stuart, and B. Pham. Current issues in soft-
ware internationalisation. In Proc. Australian Computer Sci-
ence Conf., 2003.

[10] J. Kam and J. Ullman. Global data flow analysis and iterative
algorithms. Journal of the ACM (JACM), 23(1):158–171,
January 1976.

[11] Y. Minamide. Static approximation of dynamically gener-
ated web pages. In Proc. WWW, pages 432–441, 2005.

[12] R. O’Callahan and D. Jackson. Lackwit: a program under-
standing tool based on type inference. In Proc. ICSE, pages
338–348, 1997.

[13] E. Uren, R. Howard, and T. Perinotti. Software Internation-
alization and Localization: An Introduction. Van Nostrand
Reinhold, 1993.

[14] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities. In Proc.
PLDI, pages 32–41, 2007.

[15] G. Wassermann and Z. Su. Static detection of cross-site
scripting vulnerabilities. In Proc. ICSE, pages 171–180,
2008.

11

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
