
NetworkProfiler: Towards Automatic Fingerprinting of Android Apps

Shuaifu Dai∗, Alok Tongaonkar†, Xiaoyin Wang∗, Antonio Nucci†, and Dawn Song∗
∗University of California, Berkeley, USA

†Narus Inc, Sunnyvale, USA

Abstract—Network operators need to have a clear visibility into
the applications running in their network. This is critical for both
security and network management. Recent years have seen an
exponential growth in the number of smart phone apps which has
complicated this task. Traditional methods of traffic classification
are no longer sufficient as the majority of this smart phone
app traffic is carried over HTTP/HTTPS. Keeping up with the
new applications that come up everyday is very challenging and
time-consuming. We present a novel technique for automatically
generating network profiles for identifying Android apps in the
HTTP traffic. A network profile consists of fingerprints, i.e.,
unique characteristics of network behavior, that can be used to
identify an app. To profile an Android app, we run the app
automatically in an emulator and collect the network traces. We
have developed a novel UI fuzzing technique for running the
app such that different execution paths are exercised, which is
necessary to build a comprehensive network profile. We have also
developed a light-weight technique, for extracting fingerprints,
that is based on identifying invariants in the generated traces.
We used our technique to generate network profiles for thousands
of apps. Using our network profiles we were able to detect the
presence of these apps in real-world network traffic logs from a
cellular provider.

I. INTRODUCTION

A critical aspect of network management from an operator’s
perspective is the ability to understand all traffic that traverses
the network. This ability is important for traffic engineering and
billing, network planning and provisioning as well as network
security. Rather than basic information about the ongoing ses-
sions, all of the aforementioned functionalities require accurate
knowledge of what is traversing the network in order to be
effective [6].

In recent years, there have been dramatic changes to the
way users behave, interact and utilize the network. More
and more users are accessing the internet via smart devices
like smart phones and tablets. According to recent statistics
by Canalys [3], 488 million smartphones have been sold in
the year 2011, compared to 415 million personal computers.
Users of these devices typically download applications (com-
monly called as smartphone/mobile apps) that provide specific
functionality. A majority of these apps access the internet.
For example, 87% of the 90K Android apps in the Android
Market [2] that we randomly sampled required permission for
Internet access. The number of such devices being used is
increasing rapidly in enterprise networks. An interesting trend
to note is that the proportion of personal devices being used in
the enterprise networks is growing rapidly. Hence, it is crucial
for network operators to have clear visibility into the mobile
apps that are running in their network.

Network traffic classification techniques that perform proto-
col identification are not sufficient for obtaining this visibility
into smartphone traffic for the following reason. A majority
of smartphone apps run over HTTP/HTTPS protocols. In
our study of around 90K Android apps for which we could
identify network calls statically, we found that more than
70K apps used HTTP/HTTPS. Operators need to be able to
identify not just HTTP traffic but applications like Youtube,
Pandora, and Facebook running over HTTP. This means that
machine-learning techniques [14] that extract features from the
network traces, and then use these features for network traffic
classification are not useful as they operate at the granularity
of protocol identification. On the other hand deep packet
inspection (DPI) based techniques [11] will be able to identify
these apps if there are signatures for the apps. Traditionally,
such signatures are developed from protocol specifications or
by reverse engineering the protocol from network traces [7] or
application binaries [5]. However, smartphone apps generally
do not have any standard specification documents and manually
reverse engineering these apps does not scale due to the
large number of smartphone apps available. Moreover, the
number of applications is increasing rapidly due to the ease
of development of smartphone apps. For example, the number
of apps in the Android Market has risen from 5K in 2009 to
400K at the end of 2011.

Recent years have seen an increasing number of research
works that analyze network traffic to understand usage behav-
iors of smartphone apps ([18], [9]). However, these papers rely
on techniques for app identification which are not applicable
for Android apps or rely on having access to the Android
devices and monitoring the specific devices. For example, Xu
et al [18] use User-Agent field in the HTTP header to
identify the app. Apple has a guideline for iOS which requires
that this field contain app identifier. However, this guideline is
not strictly enforced. For Android apps the situation is even
worse since developers generally put some generic string (not
unique to the app but identifying the Android version and
such) in this field. On the other hand the approach taken of
making some users use apps on specific devices to collect
network trace and profile app usage does not give real-world
data ([9], [17]). Moreover, manual execution of apps suffers
from the problems of incomplete app behavior coverage and
scalability. The approach of using Host field in the HTTP
header for identifying the apps works for some apps but is not
sufficient because the same host may serve multiple apps. This
is typically true when the same app developer such as Zynga
publishes multiple apps. The increasing popularity of smart-

2

phone apps has led to development of many platforms, such as
Facebook, which support apps from different developers. The
apps which are developed on such platforms typically use the
servers from the platform provider to provide their service.
Hence, it is very common to see the case where multiple
apps are hosted on the same third-party hosts. For instance,
m.facebook.com hosts many apps such as Pirates Mobile, a
gaming app, and Squats, a personal training app. Therefore,
we came up with a new way of identifying Android apps
from the network traffic. Just as DNA profiles of people can
be used to identify individuals based on their unqiue DNA
sequences, we developed the concept of a network profile for
an Android app that uses unique characteristics of the network
behavior of the app, that we call as network fingerprints, to
identify the app. The network fingerprint for an Android app
consists of two components: hosts that the app connects to and
a state machine representing the patterns over the strings that
occur in the HTTP header of the requests made by the app to
those servers. We focus on only the HTTP traffic of apps since
according to our survey of over 90K apps, most of the Android
apps with Internet access are using HTTP/HTTPS, and among
these apps, more than 70% do not use HTTPS. Even for the
apps such as Facebook that use HTTPS, they often use it only
in the authentication phase of the session and use HTTP for
rest of the user interaction. Similar findings from 18 free and
9 paid apps led Wei et al [17] to conclude that most mobile
app network traffic is unencrypted.

We developed an automatic technique for extracting these
app fingerprints from the network traces obtained by running
these apps in an emulator in an automated fashion. The key
to generating good network profiles (i.e., which cover most
of the network behaviors), is to ensure that the app is driven
along most of its execution path when the network traces
are being collected. For this we developed a novel technique
for exercising new app behavior that is based on UI fuzzing.
Even in the case that an app requires login, we are able
to generate different execution runs automatically from the
traces of a single execution run of the app by any user. The
UI fuzzing technique works by generating events to exercise
unexplored paths of the app. As a proof of concept we analyzed
10k apps and generated network profiles for those apps. The
techniques presented in this paper can be used along with an
infrastructure, that monitors an app market and downloads new
apps, to generate network profiles for newer apps and maintain
a periodically updated database of the network profiles of all
Android apps. It should be noted that even though we have
developed the system for Android applications, the techniques
and ideas developed in this work can be applied to other mobile
platforms such as iOS and Windows Mobile.

The main contributions of this work are as below.
• We built a novel system, NetworkProfiler, that is able to
efficiently generate network profiles for Android apps. Com-
pared to traditional approaches that require careful inspection
and reverse-engineering of application payloads, our system
requires much less time and expertise to generate the network

(a) Main Activity (b) Wallpaper Activity

Fig. 1: The Screen Shots of Zedge.

profiles.
• Based on UI fuzzing, we developed a technique that is able
to automatically identify and execute multiple paths for an
Android app, which exercises different network behaviors of
the app.
• We present an algorithm that automatically extracts a finger-
print for an Android app based on its network traces.
• We used NetworkProfiler to generate network profiles for
Android apps, and evaluated the generated profiles on a mixture
of network traffic of these apps. Evaluation results show our
network profile are able to identify apps in network traffic with
high precision.

The rest of this paper is organized as below. In Section II, we
present the motivation for this work. In Section III, we discuss
the details of the system that we have built. In Section IV, we
present an evaluation of our system. We discuss related research
in Section V before we conclude the paper in Section VI.

II. MOTIVATION

Our motivation in this work is to extract fingerprints, i.e.,
patterns of string within the network traces that are unique
to the app and can be used to distinguish the app from other
apps. Since we consider only apps that use HTTP, the network
behavior can be characterized in terms of the different HTTP
requests. Note that an app can have many different network
behaviors. The network behavior may be different in terms
of the HTTP method, hosts contacted, URL paths or queries,
and so on. To better illustrate the challenges in automatically
extracting application-level fingerprints for android apps, we
discuss Zedge [2], one of the most popular apps in the Android
Market (more than 10 million downloads) as a motivating
example. Zedge is a simple previewer and downloader for
mobile phone wallpapers, ringtones, and notification sounds.
The typical user interactions with the app are as follows:
a user first starts the app; then she clicks on an option to
choose whether she wants to download a wallpaper, a ringtone,
or a notification sound (Figure 1a); after that, a table of

3

GET /dl/wallpaper/
9370c626058a0e01a0a45d1aff0b730c/
mountains.jpg?ref=android&type=mc
&attachment=1 HTTP/1.1
Host: fsa.zedge.net

GET /dl/wallpaper/
3dead9d0f52b1858bb028a974e2cd13f/
angry_birds.jpg?ref=android&type=mc
&attachment=1 HTTP/1.1
Host: fsb.zedge.net

GET /dl/wallpaper/
b26473e40eb9bfd3c45c0aa44c33438a/
multi_zebra.jpg?ref=android&type=mc
&attachment=1 HTTP/1.1
Host: fsb.zedge.net

(a) Download Wallpaper

GET /dl/ringtone/
e502f0bafdce17eeb8fa7fbe0d101f6c/
morning_alarm.mp3?ref=android
&type=mc HTTP/1.1
Host: fsa.zedge.net

GET /dl/ringtone/
98477923a866f3b1f1549b7a327410f5/
nokia_lumia_800.mp3?ref=android
&type=mc HTTP/1.1
Host: fsa.zedge.net

GET /dl/ringtone/
5b2006df71c5b72804d56fa0c350550a/
mission_impossible.mp3?ref=android
&type=mc HTTP/1.1
Host: fsa.zedge.net

(b) Download Ringtone

Fig. 2: Flows of Zedge

TABLE I: Sample Network Profiles for Android Apps

App Name Package Name Hosts State
Machine

Zedge net.zedge.android *.zedge.net S1
Pandora com.pandora.android *.pandora.com -

Ringtone Maker com.rtapps.ringtonemaker *.adwhirl.com S2

wallpapers/ringtones/notification sounds previews are fetched
from the internet and presented according to her choice, and
she can proceed to download a wallpaper/ringtone/notification
sound that she likes (Figure 1b). In the above process, both the
fetching of the previews and the downloading of the content
involves network access. Here we note that these are different
network behaviors. Figure 2a and Figure 2b show the flows
generated when a user tries to download a wallpaper or a
ringtone using the Zedge app. For ease of understanding we
focus on just the HTTP GET method and the query part of the
HTTP request. The ideas presented here can be easily extended
to other fields in the HTTP header.

We observe that to generate an effective network profile for
an Android app based on network traces, it is important that the
collected network traces for fingerprint extraction reveal most
of the network behaviors of the app. Consider the extreme case
when Zedge is executed only once. A fingerprint generated
from this network trace will be specific to the downloaded
content (e.g., the download URL of a certain wallpaper).
Furthermore, if many network traces are collected but none of
them reveal the behavior of downloading a ringtone, then the
generated fingerprint will not be able to identify the network
traffic of Zedge that relates to downloading ringtones. The
general observation is that in the fingerprint extraction, the
network traces of the app under analysis need diversity in terms
of network behaviors, so that the extracted fingerprint will not
be specific to a certain program input (e.g., a user input URL).
Since a modern smartphone app often has a number of different
network behaviors, and only one or part of them may actually
occur on the network operator’s network, it is important for
the fingerprints to cover as many of its network behaviors as
possible, so that they can help to successfully identify the app.

The key idea behind our fingerprint extraction algorithm is to

1 2

3 4 5 6

7 8 9

10 11 12

0
GET /dl

/wallpaper

/notification_sound

/ringtone

ref=

ref=

ref=

type=

type=

type=

attachment=

Fig. 3: State machine for Zedge.

identify the invariant parts of the flows belonging to an app. If
the invariant parts are unique to the app then they can be used to
identify the app. We found that the combination of Host field
within the HTTP header and invariant patterns within the HTTP
header such as some strings in the URL query can be used to
uniquely identify the apps. We represent the invariant patterns
within the headers as simple state machines over strings. A
network profile for an app can be built using a combination
of fingerprints for the app. Table I shows the network profiles
for some Android apps. We represent the hosts component as
a regular expression over the hostnames, present in the Host
field, of multiple flows of the app that exhibit similar behavior
when contacting these hosts. State machine S1 for Zedge is
shown in Figure 3 while Figure 9 shows the state machine for
Ringtone Maker app. Note that for apps like Pandora which can
be identified by the hosts that they connect to, we do not need
the state machine component as shown in Table I. The main
motivation of this work is to develop techniques which allow
creation of such profiles for Android apps with minimal human
intervention. There are two crucial challenges for effective app-
level network profile generation: (i) thorough exploration of
the apps’ network behaviors, and (ii) extracting fingerprints
from the traces that are general enough to capture network
behavior that has not been seen in training yet are specific
to the app behavior to avoid imprecise identification. In the
following section we describe the system that we built that
addresses these two problems.

III. SYSTEM DESIGN

NetworkProfiler is an automatic network profile generator for
Android apps. It has two main components - (1) DroidDriver
automatically runs the Android app in an emulator and collects
the network traces, and (2) Fingerprint Extractor automatically
extracts fingerprints from the captured network traces. Figure4
shows the main building blocks of these components. For ease
of understanding we will discuss the Fingerprint Extractor
before going into the details of the Droid Driver. We will
continue using Zedge as the running example.

A. Fingerprint Extractor

The goal of the Fingerprint Extractor is to extract meaningful
fingerprints for the Android apps from the network packet
traces. One of the interesting characteristics of Android apps
is that they may communicate with many different servers for
different purposes. A typical Android app may contact the web
site of the app provider to obtain the API information, connect
to a cloud service like Amazon EC2 for downloading some
files, contact sites such as doubleclick.com and admob.com
to retrieve ads, and provide usage stats to sites such as

4

*.apk

Network
traffic

Network
profile

Tokenized
Flows Clusters

Random
Tester

Fingerprint
GeneratorClustererHTTP

Parser

Directed
Tester

Network
traffic

Network
traffic

Droid Driver

Fingerprint Extractor

Hosts:{...}

Fig. 4: NetworkProfiler overview.

googleanalytics.com. We can consider flows going to each of
these servers as exhibiting different network behavior. When
we collect the network traces for an app from the emulator,
it contains packets going to all these servers. To generate a
meaningful network profile for an app, we need to extract
fingerprints for these distinct behaviors.

The straight forward approach for extracting different fin-
gerprints is to group the flows by the Host field in the HTTP
headers. Unfortunately, this approach results in separating out
flows that exhibit similar behavior but go to different hosts.
This is not good for extracting fingerprints as many apps
use multiple hosts for providing the same functionality. For
example, using this approach, we would separate out flows
going to fsa.zedge.net from fsb.zedge.net, even though they
provide the same functionality. Hence, we developed a flow
grouping algorithm based on the structural similarity between
the flows. Structural similarity of HTTP flows has previously
been used successfully by Perdisci et al [15] to group together
malicious flows.

We run the app being analyzed multiple times in the emulator
and combine all the traces for an app. The Fingerprint Extractor
first tokenizes the HTTP flows via a parser and sends the
tokenized flows to the clusterer. Consider the HTTP request
in Figure 5. We tokenize or breakup the request into various
components. For ease of explanation we have omitted other
header fields from the request. However the same techniques
can be extended to cover other header fields. We can break
the request into method (m), page (p), and query (q). Page
can be further broken into a number of page-components
(pcs) and filename (fn). Query can be split into key-value
pairs (k-v). Initially we group all flows based on just the
method type, i.e., all requests having the same method are
grouped together. The clusterer then performs an agglomerative
clustering of HTTP requests within each group of request
by finding structural similarities between tokens. In order to
capture these similarities, we define a measure of distance
between two HTTP requests, say i and j, in terms of the tokens
as follows -

• Distance between pages, dp(i, j): We compute the Jac-
card index [4] between the pagecomponents of the
the pages as a measure of similarity. The distance is
1− similarity. We note that we exclude the filenames

in this computation.
• Distance between queries, dq(i, j): We compute the Jac-

card index between the keys in the queries as a measure
of similarity. The distance is 1 − similarity. We note
that we exclude the values in this computation.

Now we define the distance between two requests, i, j as
dh(i, j) = (dp(i, j)+dq(i, j)/2, If this value is above a certain
threshold tg , we group the requests into the same cluster. We
start off with all requests in separate clusters of their own.
We compare each request with every other request and put
the requests with a distance less than the threshold, tg , into
the same cluster. We experimented with different values of
threshold and found that a threshold of 0.6 gives good results in
terms of the cohesiveness of the flows. Note that if a new flow
is similar to flows in multiple clusters, we merge the clusters
and add this flow to the new merged cluster.

Next we generate Prefix Tree Acceptor (PTA), which are
trie-like state machines (i.e., no back edges), for each cluster
by considering only the method, page-components (excluding
filename) and query-keys. We do not describe the construc-
tion of PTA but refer the interested readers to [13] for details.
Fingerprint Extractor generates state machines on the invariant
tokens for each of the clusters. The fact that we execute the
app multiple times ensures that the invariant tokens do not
contain terms like names of files being downloaded. We note
that query-values typically consist of terms that are not useful
for identifying the app such as resolution of the screen or
the Android version number. We discuss exceptions to this,
i.e., cases when we retain the query-value tokens in the state
machines, in the next section. In future, we plan to run the
app in emulators corresponding to different configurations with
regards to Android versions, screen resolution, etc. to obtain
traces where such query-values are not invariant but other
tokens are. Figure 6 shows the state machine for the wallpaper
download behavior of Zedge. The states in the state machines
contain implicit self-loops that allow matching of additional
tokens that we have either omitted for being variable or the
ones that we have not observed in the training traces. We omit
these self-loops from all the figures in this paper for simplicity.

We combine fingerprints that contain the same hosts by
merging the state machines. In our experiments, the cluster for
downloading of wallpapers contained the hosts fsa.zedge.net,
fsb.zedge.net, for ringtones contained fsa.zedge.net, and for
notifications contained fsb.zedge.net. We combined these fin-
gerprints as wallpapers and ringtones have fsa.zedge.net in
common and and wallpapers and ringtones have fsb.zedge.net
in common. The merged state machine is shown in Figure 3.
Another strategy that we use is to merge fingerprints for hosts
with common level two domains in the case where the state
machines have a common prefix.

1) Third-party traffic: In some of the flows, the query-
values contain terms that have the app name embedded in
them. Such tokens are very good for identifying the app. We
have a simple strategy for including such tokens. Android
apps are distributed in the form of .apk files. Each apk file

5

GET /dl/wallpaper/71481.../london_streets.jpg?ref=android&type=mc&attachment=1 HTTP/1.1

m p q

pc fn k v

Fig. 5: HTTP request of Zedge.

1 2 3 4 5 60
GET /dl /wallpaper ref= type= attachment=

Fig. 6: Zedge wallpaper download state machine.

contains the app binaries as well as a manifest file which con-
tains meta-data such as app name, package name, permissions
required, libraries used, etc. For each app we extract a set of
keywords from the manifest file that could identify the app.
If any value token contains a keyword as a substring we pick
up the token in the state machine. Figure 7 shows the state
machine for Youtube that contains the term youtube gdata.

1 2 3 4 5 60
GET /videoplayback source= app= youtube_gdata expire=

Fig. 7: State machine for Youtube.
The other case when query-values are useful for identifying

the app is in the case of third-party flows. In many cases,
the third-party traffic contains certain identifiers that can be
used to identify the app. For example, flows belonging to apps
running on the Facebook platform contain the app identifier as
the value of the app id key. These identifier values are usually
alphanumeric strings that are unique to the app for a specific
third-party provider or the name of the app itself. Similarly,
most of the free apps in Android Market contact advertisement
providers to generate revenue for the developers. Many of these
advertisement companies use certain identifiers in the flows to
identify the apps that caused the traffic to be generated. The
way that the developers use these ads is by registering with the
ads provider. The ads provider generates a unique identifier for
the app. The developer then makes calls to the ad libraries
with this identifier. At run time, the ads library embeds this
identifier when flows connect to the ad provider servers. For
example, Figure 8 shows a flow to mob.adwhirl.com. There is
a key named “appid” and the corresponding value is the app’s
identifier.

Third-party providers such as platform providers (e.g. Face-
book) and ad providers (e.g. Admob) typically publish guide-
lines for developers which mention the query-key that is used
to identify the app. It is a one-time effort to build a mapping
between hostnames and the query-keys, present in the flows to
that hostname, that are used as unique identifiers. We can then
pick the query-values corresponding to these unique identi-
fiers. For a third-party, we require that the key-values picked
need to satisfy uniqueness property, i.e., a given key-value is
present only in the flows belonging to an app and not in the
flows belonging the other apps. This is needed since we require
the fingerprint for an app to be unique, i.e., the fingerprint for
an app needs to differ from the fingerprints of other apps in
either the hostname or the state machine components. In such
cases the fingerprint for the third-party flow can be simplified as
containing the hostnames of the servers for the third-party and
a simple state machine containing transitions corresponding to

GET /getInfo.php?appid=b844b45dfd844a2e963dfcbf261d1a84&appver=300&client=2

key value

Fig. 8: HTTP request of Adwhirl in Ringtone Maker.

1 2 30
GET appid= b844b45dfd844a2e963dfcbf261d1a84

Fig. 9: State machine for Ringtone Maker.

just the method name, and the key-value as shown in Figure 9.
In case of third-party services which do not contain such unique
query-values, different apps may have the same state machine.
Hence those flows can not be used for fingerprint extraction.
This is acceptable since our goal in this work is to identify
different apps and not individual flow classification.

Another interesting observation is that in many cases, these
unique key-values, satisfy another important property - per-
sistence. What we mean by persistence is that in any execution
of the app, there will be at least one flow that contains the
given key-value going to the host belonging to the third-
party. In such cases, we can simplify the network profile
to contain just a single fingerprint (extracted from the flows
containing the persistent and unique key-value). This has
important implications for the efficiency of Droid Driver as
we will see in the next section.

B. Droid Driver

Droid Driver is the component responsible for executing
the Android app and collecting the network traces. It has
two main components - (i) Random Tester and (ii) Directed
Tester. For any given app, the Droid Driver works in the
random testing mode using the Random tester or in the directed
testing mode using the Directed Tester. The need for these two
distinct components becomes clear if we consider the types
of traffic generated by an app. Wei et al [17] classified the
traffic generated from an app into - (i) origin - traffic generated
by servers belonging to the app provider, (ii) third-party -
traffic going to ad providers (e.g. Admob, Google Doubleclick)
and analytical services (e.g. Omniture, Google Analytics), (iii)
CDN+cloud - traffic generated by Content Distribution Net-
works (e.g. Akamai) or cloud providers (e.g. Amazon), and (iv)
rest - all other traffic. As noted earlier, for origin traffic, we can
generate fingerprints consisting of just the hostnames. Similarly
for third-party traffic containing unique and persistent key-
value, we can generate fingerprints containing just hostnames
and simple state machines using the key-value. For apps
which contain the above kinds of traffic, we can run the app
randomly to extract fingerprints. The Random Tester, built
using Android testing tool, monkeyrunner [1], is responsible for
running the app randomly and capturing the generated traffic
for the Fingerprint Extractor. Random Testing is very efficient
as the events to be sent to the app are chosen at random. In
fact, in the cases where the app contacts ad providers at startup
or contacts the origin server for receiving api information, just
starting up an app in the emulator generates network traffic
which can be used to extract the fingerprint.

6

TABLE II: Keys for different ads libraries.

Ads Library Host Name key
Admob googleads.g.doubleclick.net app name

Mobclix data.mobclix.com a
ads.mobclix.com i

Adwhirl ∗.adwhirl.com appid
Mobfox my.mobfox.com s
Mydas ∗.mp.mydas.mobi apid
Adlantis sp.ad.adlantis.jp appIdentifier
Openx {ox-d.ad-maker.info|u.open.net} auid
Appsgeyser ads.appsgeyser.com id
Smaato soma.smaato.{net|com} app
Guohead mob.guohead.com appid
Waps ∗.waps.cn app id
Greystrip ∗.greystripe.com pubappid
Adview www.adview.cn appid
Adsmogo ∗.adsmogo.com appid
Admarvel ads.admarvel.com partner id
I-mobile spapi.i-mobile.co.jp appid
Ads-svx ads-svx.httpads.com guid

Although, random testing is efficient, it does not suffice for
all the apps. As shown in [17] many apps like Angry Birds and
ESPN do not have any origin server. Also, many of the paid
apps do not contain any ads. Even for apps that contain ads, the
identifier may refer to the developer id and not app id, in which
case it can not be used as a unique key-value. For such apps,
we developed Directed Tester, which is responsible for driving
the Android app, based on some initial paths seed, to execute
those paths that generate network traffic, and collecting the
network traces. We built Directed Tester system as an extension
to the Android testing framework, which allows the user to
communicate with a testee app via a tester app. It consists of
three modules - (i) Path Recorder, (ii) Heuristic Path Generator,
and (iii) Path Replayer. We describe each of these in detail in
the following sections.

1) Path Recorder: Android apps consist of a number of
activities. An activity is an application component that provides
a screen with which users can interact in order to do something.
The basic building block for user interface components in
an activity is a view. A view occupies a rectangular area on
the screen and is responsible for drawing and event handling.
Views that are used to create interactive UI components (e.g.,
Button, TextView, ImageView) are called widgets. User
interact with activities using events such as clicking a button,
pressing a key on the keyboard, or scrolling on the screen.
Path Recorder records the user events for apps running in
an emulator. Path Recorder was built by modifying existing
Android tools [1] - monkeyrunner, which provides information
about the coordinates on the screen where an event such as
click occurred, and hierarchy viewer, which keeps a mapping
of the coordinates of different views present on the screen. We
combine the information from both the tools to record the user
events in such a way that they can be replayed at a later time
or used to figure out other paths possible through the app.

2) Heuristic Path Generator: Heuristic Path Generator is the
component that is responsible for generating the unexplored
paths to be executed by the app. It is based on UI fuzzing

…

Seed path

Heuristic path

Button

ImageView

Button[i]

ImageView[i] ImageButton ImageButton[i]

TextView
TextView[i]

… …

…

Fig. 10: Generated paths.

technique, which is a recent advancement in mobile software
testing [12]. The intuition behind the heuristic path generator is,
if we perform an action on a view, such as clicking a button,
that could lead to a network behavior, then there is a high
probability that performing the same action on other parallel
views (i.e., clicking on other buttons) will also have network
behaviors. Here the parallel views means the same type of
widget in a activity. For example, all the Buttons within
an activity are parallel, and all the ImageViews within an
activity are parallel.

Considering the Zedge app, its main activity shows three
TextViews corresponding to the three options (Figure 1a).
If we click on Wallpapers, then there are six wallpapers shown
on the screen as ImageViews (Figure 1b). No matter which
wallpaper is clicked, a new download activity with a larger
version of this wallpaper appears with a download button. If
we only have one network trace, the fingerprint is very specific
to the clicked wallpaper. But if we can obtain multiple similar
network traces, then the fingerprint will be much more abstract
and representative. The path of downloading the wallpaper in
Zedge could be: (1) click wallpaper in the main activity, (2)
click one wallpaper in the second activity, (3) click download
button in the third activity. The paths generated by our algo-
rithm are shown as dotted lines in Figure 10. This heuristic
algorithm can not only increase the coverage of the paths with
different network behaviors (which makes our profiles more
representative), but also increase the number of traces with
similar network behaviors (which make our fingerprints more
abstract). For example, in Zedge app if we have only one path
in the manual run corresponding to downloading the wallpaper
as the seed path, then we can get other paths in step (ii),
i.e., download the ringtones and notification sounds as well,
since they are all parallel TextViews. Also, we can generate
more paths corresponding to downloading other wallpapers by
replacing the ImageView clicked in step (ii) with different
ImageViews.

3) Path Replayer: Path Replayer is a dynamic path driven
engine which forces the app to execute a given path and
then captures the network trace of the app. It consists of
four components: (i) View Identification Module, (ii) Event
Emulation Module, (iii) System API Logging Module, and (iv)
Network Traffic Capture Module, shown in Figure 11. The
View Identification Module identifies the views, such as the
button positions, in the current activity. The Event Emulation
module takes the paths as input and perform the actions one
by one. It supports different user behaviors such as click-

7

View
Identifier

Network Traffic
Capture

System API
Logger

Android Emulator

Event
Emulator

Fig. 11: Path Replayer.

ing/swiping on the screen, sending the keyboard events(such as
pressing the menu button), sending broadcast events (such as
sms receive notification). The Network Traffic Capture Module
captures the network traffic using tcpdump. The System API
Logging Module is used to identify which network traffic is
originating from the app under observation. We ported the
strace utility to Android to log each networking system call
performed by the app. We identify all the threads started
by the app using the process id (pid) of the app. Based on
this information, we can filter out the traffic that does not
origin from the app. The System API Logging Module and
the Network Traffic Capture Module are used by the Random
Tester as well.

IV. EVALUATION

In this section we provide the details about the evaluation
of our techniques which mainly focused on free apps. First,
we focus on fingerprints for third-party traffic. As explained in
section III-A1, flows for third-party services can be generated
more efficiently. Also, if the third-party flows contain unique
and persistent key-value, we can use the fingerprint for the
identifying the apps and need not generate the more complex
fingerprints for other traffic for the app.

A. Ad Traffic

As a case study of third-party services, we evaluated the
fingerprint extraction algorithm for ad libraries in detail. We
picked ads for our study as our experiments with two hours
of mobile traffic from a national cellular provider showed
that ads account for a major portion of the traffic. Michael
et al [10] studied mobile in-app ads in-depth to identify
private information being leaked. They identified the 100 most
popular ad libraries used by 100K randomly chosen apps.
These ad libraries were embedded in more than half of the
apps. We used these ad libraries as our reference as the
paper presents a straight-forward way for identifying these
ad libraries from the manifest files. We crawled the Android
market and downloaded 90K free apps. We were able to
determine that 70K (i.e., 87%) of these apps asked for the
android.permission.INTERNET in their manifest files.
This permission is needed by any app which needs to access
the network. For 32K of these apps we were able to identify
the ads library that was being used by examining the manifest
files. Figure 12 shows the number of ads library used by each
app. We can see that a majority of the apps (≈25K) use only
1 ad library and only 1% of the apps use more than 5 ad

libraries. This means that number of fingerprints that we need
to generate is typically between 1 and 5 for these apps. This
makes the use of fingerprints for a large number of apps, in
large-scale network traffic data analysis, efficient and practical.

Next we tried to understand the effort required in identifying
the name of the identifier key used by the ads library. We
picked 10K apps randomly from the 32K apps that we knew
contained ads. We ran each app in a separate emulator using
Random Tester and collected the traces for it. We determined
the ads used by each app using the hosts that the ad traffic
connected to for 30 of the most popular ad libraries. We observe
that maximum number of apps (1462) use GoogleAds, which
confirms the findings of [17], although their experiments were
done with a small number (18) of apps. Figure 13 shows that
the top 10 ads libraries account for a majority of the apps
and the rest 20 for a small fraction of the apps. The long-tail
distribution suggests that we can cover a majority of the apps
by handling the top, say 100-200, most popular ads library. Our
findings from the dynamic analysis, i.e., from traffic traces are
consistent with those in [10], where the top 100 ad libraries
were being used by more than 50% of the apps, as identified
by static analysis of the manifest files .

Different ad providers may use different identifier names. We
examined over 3K apps that contained these 30 ad libraries to
see which ad libraries have an app identifier in the manifest
file. We observed that almost half of the ads libraries had
identifier names in the app manifest files (Table III). Note that
the identifiers listed in this table are not necessarily unique
for apps. For example, Aduru uses a developer key while
Wooboo and Domob may be using publisher id. We looked up
ad provider documentation, and picked up the identifier names
only when they are guaranteed to be unique for each app. Next
we examined the traffic for each ad library from the apps to
find out the query-key that is used. Note the query-key may
be different from the identifier name in the manifest file. If we
consider the Adwhirl library, we can see from Table III the
identifier name is ADWHIRL_KEY while Table II shows that
the identifier value is provided for query-key appid. Table II
shows the query-keys used by different ad providers as unique
identifiers. The way we figure out the query-key for each ad
library is that we run 10 different apps which contain that ad.
For each app, we look for the value associated with the ad
identifier in the query strings. If for all 10 apps for an ad, the
query-values corresponding to the identifier values in manifest
are occurring with the same query-key, then we know that the
given query-key and its query-value are the unique tokens
needed to identify the app. For the ad libraries for which the
unique identifiers are present explicitly in the manifest file, we
can create this mapping between the identifier name in manifest
file and the query-key. Then for any new app that uses this
ad library, we can generate the fingerprint just by extracting
the identifier value from its manifest file. For the ad libraries
which do not have such explicit identifiers, we need to figure
out the identifier query-key from manual inspection of traffic
and other sources such as publisher guidelines, static analysis

8

TABLE III: Explicit ID for Ad Libraries.

Ads Library Key in App Manifest
Admob ADMOB PUBLISHER ID
Mobclix com.mobclix.APPLICATION ID
Adwhirl ADWHIRL KEY
Waps WAPS ID
Wooboo Wooboo PID
Domob DOMOB PID
Admarvel ADMARVEL PARTNER ID
Admogo ADMOGO KEY
Madvertise madvertise site token
Adwo Adwo PID
Nexage NEXAGE DCN
Flurry flurry key
Tapjoy tapjoy key
Aduru ADURU DEVELOPER ID

of sample apps, or even by combining all flows for the same
app provider for an app and using the Fingerprint Extractor to
identify the invariant tokens. The mapping between apps and
their query-value can then be generated in our system based
on Random Testing. Lastly, for apps which contain identifier
keys but which are not unique to the app, we fall back to the
Directed Testing method for extracting the fingerprints.

We used the fingerprints based on the ads to identify apps
in a two hour long trace for a cellular provider. We were
able to identify 306 apps in the traces. Since we did not
have ground truth about the apps present in the network, we
manually inspected the traces to verify the accuracy of the
identification. We found that 159 of those had app name as the
unique key value. So we can say with certainty that these apps
were identified correctly. For the flows identified as belonging
to the remaining 147 apps we extracted all flows occurring
within 5 minutes before and after these flows. Our assumption
here is that the flows belonging to the same app must exhibit
some temporal proximity. Even though this is not completely
accurate, it is a heuristic which works well when devices have
single apps running on them. From the flows that are close by
(in time), we tried to manually verify whether the identified
app was actually running at that time. We used origin traffic
as well as keywords in traffic such as video, music, and games
to figure out whether the app was indeed running at that time.
Note that this information is not fool-proof and can not be used
for doing the identification in the first place because (i) same
host may serve multiple apps (ii) origin traffic may be absent
in the traces. We were able to verify the presence of many (65)
of the apps. We were not able to verify the presence of other
apps by manual inspection which shows the inherent difficulty
in app identification from network traffic.

B. Non-Ad Traffic

To evaluate the non-ad traffic fingerprints, we considered 6
popular apps - Youtube, Flixster, ESPN Score Center, CNET
News, Pandora, and Zedge [2]. We manually generated a seed
action path for each app. We provided this seed action path
and the installation package of the app to the NetworkProfiler
system. We excluded all ads traffic from the traces generated by
the Directed Testing of the apps. We extracted network profiles

for the remaining traffic. We used the generated network
profiles for identifying apps from annotated network traces.
Specifically, we manually executed each app separately. We
captured the network traffic during the execution of each app
and annotated the network trace with the name of the app.
These annotations represent the ground truth about which app
the network trace corresponds to. It should be noted that we had
one group of people perform the seed-action-path generation
during the network profile generation phase, and another to
perform the generation of annotated network traces. To further
ensure that the generated traffic is not biased towards our
generated network profiles, we required the two groups to work
independently without sharing any information about how they
execute the apps.

We consider network fingerprints containing only the hosts
and no state machines to be trivial and exclude them from the
evaluation. For each app, we used all its non-trivial fingerprints
to match the traffic in all the annotated network traces. We
observed that the fingerprints never match traffic from any other
app. This shows that we obtain high precision, i.e., low false
positives. Also, we did not fail to identify any app that was
present in the annotated network trace, i.e., we succeeded in
identifying all apps for which we had generated the network
profiles. We were also able to identify these apps in the two
hour traces and verify their validity using ad flows close to the
identified flows.

C. Limitations

We can not distinguish apps which use the same service and
have no distinct network behavior. For example, if two apps
use Google Maps service and nothing else on the network,
then both contact the same hosts and have the same state
machines as they are using the same api. Similarly, when
different versions of the same app have no distinct network
behaviors, we end up generating the same network profiles for
the versions. We believe this is not a serious limitation as these
apps, from a network behavior perspective are same, and thus,
we can provide multiple labels (corresponding to the different
apps, or different versions of the app) when a shared fingerprint
matches a flow. This is true even in the case of third-party
traffic, where a developer may use developer id for apps and
the apps may not differ in network behavior. Indeed, we saw in
our experiments that one app developer had generated multiple
copies of the same wallpaper download app. So the network
profiles for all these apps were similar.

Another limitation of our work is that we need a user
seed path when login is involved. In future, we plan to
explore automating this as well crowd-sourcing approaches
for obtaining seed path. Other limitations relate to the time
required to download and run apps as we need to stop and start
the emulator for every app being analyzed to ensure that they
are run in a clean environment. This required approximately 1
minute per app for random testing which translates to running
1440 apps a day. This means that we required 7 days for
running 10K apps even in the simplest case. To improve

9

24955

4660

1322 616 379 345
0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 5+

N
u
m
b
er
 o
f
ap
p
s

Number of different ads libraries in one app

Fig. 12: Number of different ads libraries in one app.

1462

471

278
125 94 70 54 42 36

304

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r o

f a
pp

s

Fig. 13: Number of different ads traffic.

the scalability of the analysis, we are building a cluster for
parallelizing these steps through use of virtual machines. This
will also help us overcome the limits that many app markets
implement on the number of apps that can be downloaded in
a day from an IP.

V. RELATED WORKS

There have been a large number of efforts on generating sig-
natures of applications from their network traffic [14] that use
the statistical information, such as packet sizes, to perform a
coarse-grain protocol level classification. Discoverer[7] focuses
on generating application-level signatures from the network
traces of the application under study. However, those tech-
niques do not work well for the Android apps where a majority
of traffic is carried within HTTP and the distinguishing features
are present in the URLs. In related research, ([16], [13]) target
signature generation for identifying worms.

Recently there have been many efforts that try to understand
smartphone usage behavior [18], [9]. None of these papers
present a systematic way for identifying Android apps in real-
world traffic. [17] aims to build app profiles at multiple levels,
including network, but their technique completely relies on
users running apps to generate traffic. This does not scale for
a large number of apps.

There has been a lot of work on analyzing Android apps for
malware. But most of these target monitoring of apps [8] or
static analysis of app code [10]. None of these works focus on
automatically executing the different parts of an Android app.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel system called Net-
workProfiler for the automated generation of network profiles
for Android apps. Our evaluation shows that we can identify
the apps with high precision. In future, we want to build a
comprehensive network profile library for the apps present in
the Android Market. Further, we plan to combine static analysis
with the dynamic analysis to improve our coverage of execution
paths within Android apps.

REFERENCES

[1] http://developer.android.com/tools/help/index.html.
[2] https://play.google.com/store/apps/.
[3] http://www.canalys.com/.
[4] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approxi-

mate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–
122, Jan. 2008.

[5] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: automatic
extraction of protocol message format using dynamic binary analysis.
In Proceedings of the 14th ACM conference on Computer and commu-
nications security, 2007.

[6] A. C. Callado, C. A. Kamienski, G. Szabo, B. P. Gero, J. Kelner, S. F. L.
Fernandes, and D. F. H. Sadok. A survey on internet traffic identification.
IEEE Communications Surveys and Tutorials, 11(3):37–52, 2009.

[7] W. Cui, J. Kannan, and H. J. Wang. Discoverer: automatic protocol
reverse engineering from network traces. In Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium, 2007.

[8] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, 2010.

[9] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin. A
first look at traffic on smartphones. In Proceedings of the 10th annual
conference on Internet measurement, 2010.

[10] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In ACM conference on Security
and Privacy in Wireless and Mobile Networks, 2012.

[11] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. Acas: automated
construction of application signatures. In Proceedings of the 2005 ACM
SIGCOMM workshop on Mining network data, 2005.

[12] C. Hu and I. Neamtiu. Automating gui testing for android applications. In
Proceedings of the 6th International Workshop on Automation of Software
Test, 2011.

[13] N. James, B. Karp, and D. Song. Polygraph: Automatically generating
signatures for polymorphic worms. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy, 2005.

[14] T. Nguyen and G. Armitage. A survey of techniques for internet traffic
classification using machine learning. Communications Surveys Tutorials,
IEEE, 10(4):56 –76, quarter 2008.

[15] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of http-
based malware and signature generation using malicious network traces.
In Proceedings of the 7th USENIX conference on Networked systems
design and implementation, 2010.

[16] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm
fingerprinting. In Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, 2004.

[17] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: Multi-
layer profiling of android applications. In Proceedings of the 18th annual
international conference on Mobile computing and networking, 2012.

[18] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman.
Identifying diverse usage behaviors of smartphone apps. In Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement
conference, 2011.

