next up previous
Next: ORDER NOTATION FOR POSITVE Up: growth Previous: growth

GROWTH RATES AND ASYMPTOTIC NOTATIONS

Goal:

def1: (For arbitrary functions) $f(n)\in O(g(n))$ if there exist two positive constants $c$ and $n_{0}$ such that

\begin{displaymath}\vert f(n)\vert\leq c\vert g(n)\vert\end{displaymath}

for all $n\geq n_{0}.$

eg.

  1. $f(n)=5n$ $g(n)=n^{2}$

    $5n_{0} \leq cn_{0}^{2}$
    $\Rightarrow 5 \leq cn_{0}$
    $\Rightarrow n_{0}=5,c=1$
    Thus, $5n=O(n^{2})$

  2. $f(n)=10^{6}n^{2}$ $g(n)=n^{2}$

    To prove: $(10^{6}n^{2})\leq cn^{2}$ for $n\geq n_{0}$
    choose $C=10^{6}$
    Then $n_{0}=1$
    $\Rightarrow (10^{6}n^{2})=O(n^{2}) $

  3. $A(n)=a_{m}n^{m}+ a_{m-1}n^{m-1}+\ldots +a_{1}n+a_{0}$

    a polynominal of degree $m$, $n,m\geq 0$ for all $i$, $a_{i}\in R$

    To Prove: $A(n)=O(n^{m})=a_{m}n^{m}+O(n^{m-1})$

    Example: $5n^3 + 2n^2 - 5 = O(n^3)  =  5n^3 + O(n^2)$
    Proof:
    To Prove: $\vert A(n)\vert  \leq  c\vert n^m\vert$

    $\vert A(n)\vert\leq \vert a_{m}\vert n^{m}+\vert a_{m-1}\vert n^{m-1}+\ldots +\vert a_{1}\vert n+\vert a_{0}\vert$

    $\leq n^{m}(\vert a_{m}\vert+\frac{\vert a_{m-1}\vert}{n}+\ldots+\frac{\vert a_{1}\vert}{n^{m-1}}
+\frac{\vert a_{0}\vert}{n^{m}})$

    $\leq n^{m}(\vert a_{m}\vert+\vert a_{m-1}\vert+\ldots +\vert a_{0}\vert)$


    $c=\vert a_{m}\vert+\vert a_{m-1}\vert+\cdots+\vert a_{0}\vert$

    $n_{0}=1$

    Example: $5n^3 + 2n^2 - 5 = O(n^3) $
    c = $5 + 2 + \vert-5\vert$ = 12

    $5n^3 + 2n^2 - 5 \leq  12n^3 $
    for all $n\geq 1$.



Subsections

Sushil_Prasad 2010-06-21