next up previous
Next: LOWER BOUND Up: SORTING BY SPLITING Previous: Quicksort: Partitioning II

Av. Case Complexity of Quicksort

Assume Probability that split point is $i$, for $1\leq i \leq n$, is $1/n$


\begin{eqnarray*}
&&A(n)=(n-1) +\frac 1 n (A(0)+A(n-1)+\\
&& A(1)+A(n-2)+ \cd...
...
&&\frac{A(n)}{n+1}-\frac{A(n-1)}{n}=\frac{2(n-1)}{n(n+1)} \\
\end{eqnarray*}

Let $B(n)=\frac{A(n)}{n+1}$ (Changing Variable)
Since $A(1)=0$, $B(1)=0$

\begin{eqnarray*}
&&\Rightarrow B(n)-B(n-1)=\frac{2(n-1)}{n(n+1)}\\
&&B(n)=\f...
...1)}, B(1) = 0\\
&&B(n)=\sum_{i=2}^{n} \frac{2(i-1)}{i(i+1)}\\
\end{eqnarray*}

$f(n) = \frac{2(n-1)}{n(n+1)}$ continuous decreasing function

\begin{eqnarray*}
&&B(n)\leq \int_{2}^{n} f(x)dx,    f(1)=0\\
&&\frac{2(x-...
...(n+1)\log n\ [0.5cm]
&&\Rightarrow A(n)\leq 1.4(n+1)\log_{2} n
\end{eqnarray*}



Sushil_Prasad 2014-09-25