next up previous
Next: Equivalence of DFA & Up: No Title Previous: Example

Equivalence of FA with Regular Expressions

We will use NFA with tex2html_wrap_inline1264 -transitions to show this equivalence.

Theorem: Let r be a regular expression. Then there exists an NFA with tex2html_wrap_inline1264 -transitions that accepts L(r).

Proof: Induction on number of operators in r.

basis:
n=0 (Zero operators)

  figure589
Figure 10: FA's for tex2html_wrap_inline1286 , or tex2html_wrap_inline1288 , for tex2html_wrap_inline1290 .

Hypothesis:
Assume true for tex2html_wrap_inline1646 operators.

Induction:
i operators
case 1:
tex2html_wrap_inline1650 . Construct FA tex2html_wrap_inline1524 using the FA's

displaymath1654

for regular expressions tex2html_wrap_inline1656 and

displaymath1658

for tex2html_wrap_inline1660 . Then, for M

displaymath1664

displaymath1666

displaymath1668

displaymath1670

  figure720
Figure 11: NFA for tex2html_wrap_inline1292

Case 2:
tex2html_wrap_inline1674

  figure731
Figure 12: NFA for tex2html_wrap_inline1294

Case 3:
tex2html_wrap_inline1678

  figure737
Figure 13: NFA for tex2html_wrap_inline1296

Example: tex2html_wrap_inline1682



Sushil Prasad
Tue Jul 7 12:26:32 EDT 1998